
:

Abstract

Geco

Geco

geco

geco

george@hsvaic.hv.boeing.com

George P. W. Williams, Jr.

November 27, 1993

GECO: A CLOS-based Framework for

Prototyping Genetic Algorithms

| Version 2 0 |

(Genetic Evolution through Combination of Objects) is an extensible, object-oriented

framework for prototyping genetic algorithms in Common Lisp. makes extensive

use of CLOS, the Common Lisp Object System, to implement its functionality. The ab-

stractions provided by the classes have been chosen with the intent both of being easily

understandable to anyone familiar with the paradigm of genetic algorithms, and of pro-

viding the algorithm developer with the ability to customize all aspects of its operation.

This paper provides a description of including its internal structure, and presents a

simple example genetic algorithm implemented on top of . The author has made the

implementation freely available via the Internet.

Contents

Geco

Geco

List of Figures 3

1 Introduction 4

2 GECO Concepts and Structure 9

3 Details of GECO Classes and Functionality 16

1.1 Purpose 4

1.2 State of the System 5

1.3 Why Lisp? 5

1.4 Notational Conventions 5

1.4.1 Terms and Concepts 6

1.4.2 Source Code 6

1.4.3 File Names, Network Paths, . . . 6

1.4.4 Descriptions of -de�ned Entities 6

1.4.5 The Index 7

1.5 Acknowledgments 7

2.1 Overview of Classes 9

2.2 Basic Flow of Control 13

3.1 The Ecosystem Class 17

3.2 The Population Class 20

1

: :

: :

: :

: :

: :

: :

: : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : :

: :

: :

: :

: :

: :

: :

Geco

GECO 2

4 A Simple Binary Example 67

5 The GECO Files 78

Bibliography 83

Index 86

CONTENTS

:

: :

: :

: :

: :

: :

: :

: : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : :

: :

: :

: :

: :

: :

: :

: :

: :

: :

: :

: :

: :

2 0

3.3 Subclasses of Population 25

3.4 Population Mixin Classes 26

3.5 The Organism Class 29

3.5.1 Basic Genetic Operators 36

3.6 Organism Mixin Classes 39

3.7 The Chromosome Class 41

3.7.1 Allele Coding: Codes vs. Values 45

3.7.2 Basic Chromosomal Genetic Operators 48

3.8 Subclasses of Chromosome 50

3.8.1 Binary Chromosomes 51

3.8.2 Binary Chromosome Decoding 52

3.8.3 Gray Code Translation 53

3.8.4 Sequence Chromosomes 55

3.8.5 Sequence Genetic Operators 56

3.9 The Genetic Plan Class 56

3.10 Selection Methods 59

3.11 The Population Statistics Class 63

4.1 Using with Packages 68

4.2 De�ning the Genetic Structures 69

4.3 De�ning a Genetic Plan 72

November 27, 1993

List of Figures

Geco

Geco

Geco

Geco

: : : : : : : : : : : : : : : :

: : : : : : :

: : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : :

2.1 's classes form an abstraction hierarchy 10

2.2 Call hierarchy for initialization of 's principle structures 14

2.3 Call hierarchy for 's evolutionary processing 14

2.4 Interrelationships between objects 15

3

etc.

etc.

Geco

geco

1.1 Purpose

Chapter 1

Introduction

Genetic algorithms (GAs) [Hol92, Gol89] covers a broad category of robust adaptive tech-

niques. They have been used to solve an increasingly large variety of di�cult problems,

including parameter optimization, combinatorial optimization, rule learning, pattern recog-

nition, automatic programming, adaptive control,

The GA research community has produced a number of reusable GA implementations

[Gre84a, Gre84b, Gol82, WK88, Spe91], but many of them implement a speci�c approach

to GAs which their authors prefer, or which reects their research orientations. Though

these implementations can be adapted to solving di�erent problems, the amount of e�ort

required to customize them generally increases dramatically as the proposed changes vary

from the original visions of their implementors.

Developing a GA-based application often requires a great deal of experimenting | trying

variations on the genetic operators, the selection algorithm, establishing various parameter

settings, Regardless of what language is used for implementing the �nal system, it

often makes a great deal of sense to develop a prototype �rst, establishing the best kind of

GA for the application and gaining a good understanding of the e�ects of varying each of

the parameters, before proceeding to create the production implementation.

(Genetic Evolution through Combination of Objects) is an attempt to construct a

more exible framework for prototyping GAs. It makes extensive use of object-oriented

implementation techniques to provide this exibility, and it was designed from the outset

with the goal of being easily customized and extended.

Although is intended for developing more-or-less classical GAs, it appears to be suf-

�ciently exible to be used for prototyping some related classes of algorithms: Learning

4

:

:

C

C

CLOS

Geco

geco

Geco

geco

GECO 5

1.4 Notational Conventions

1.2 State of the System

1.3 Why Lisp?

1.4 Notational Conventions

2 0

Classi�er Systems (LCSs) [HR78, HHNT87], Genetic Programming (GP) [Koz92], Evolu-

tion Strategies (ESs) [BHS91], and Evolutionary Programming (EP) [MJ91].

is a work in progress. It is still in its infancy, and does not provide all the features

required for it to be considered a complete GA toolkit. But where it lacks functionality,

it can be easily extended to implement new capabilities. Furthermore, as it continues to

grow, its structure will certainly continue to evolve to make it even more adaptable. Much

like other evolutionary processes, I hope to improve as I learn through feedback from

its community of users.

is copyrighted free software. The complete source code is available directly from the

author, and from a number of anonymous FTP archives on the Internet.

This version of the documentation refers to version 2 0 of the software.

Since GAs are computationally expensive, most implementations are in `conventional' pro-

gramming languages such as \for e�ciency." Lisp is a much more convenient language

for prototyping, since almost all implementations are highly interactive and provide a great

deal of support for the development process. Common Lisp is becoming the standard indus-

trial strength dialect in the United States, and it has many high quality implementations

on a wide variety of platforms. Furthermore, the compilers are capable of producing code

which often rivals `conventional' language implementations for speed and e�ciency. Com-

mon Lisp is also one of the most portable languages available today | in many ways more

portable than or Ada. The relatively recent addition of the Common Lisp Object System

() to the Common Lisp language [Ste90, Kee89] has provided a full-featured object-

oriented extension to the language, which greatly enhances it's capability for prototyping

and writing extensible libraries.

This document follows several notational conventions for the sake of conciseness, and to

assist the reader in understanding usage in context.

November 27, 1993

:

)

)

. . .

Geco

slanted

geco

Geco

sans serif

ag line

GECO 6

1.4.4 Descriptions of -de�ned Entities

etc.

Common Lisp:

The Language

ag

Variable

e.g.

typewriter

typewriter

typewriter

example-variable

&optional &key typewriter

&optional &key &rest

1.4.1 Terms and Concepts

1.4.2 Source Code

1.4.3 File Names, Network Paths,

1.4.4 Descriptions of -de�ned Entities

2 0

Most new (and some common) terms and concepts which are used in this document are

set in type when they are introduced and/or de�ned, or when it seems important

to emphasize that the word or phrase has a speci�c meaning in context. In addition, the

location in the document where the concept is explained or de�ned appears in the index.

All source code is set in style type, whether it appears in the body of the text,

or set o� from the body of the text as an example. This includes names of Common Lisp

or -de�ned entities, such as names of functions, classes, , which will also be set in

style type.

All such references will be set in style type.

The syntactic descriptions of functions, methods, variables, classes, and other de�nitions

are presented in a distinctive format, similar to that used in Guy Steele's

[Ste90], and many other similar documents since. This stylized description

is generally followed by narrative body text explaining the intended usage and semantics.

References in the body text to components of the syntactic description will appear in the

same type style in which the component appears in the syntactic description.

The �rst line of one of these syntactic descriptions is always signalled by a symbol

appearing in the left margin; this line is referred to below as a , since the symbol

in the margin helps to the readers attention. This ag line speci�es the name of the

de�nition against the left margin, with the type of de�nition in italics and brackets against

the right margin. For example:

[]

For functions, generic functions, and macros, any arguments appear on indented lines

immediately following the ag line, with the argument names set in type. Common

Lisp lambda-list keywords (, ,) are set in style type, since

they are literal language constructs in the de�nition (though they do not appear when the

form is used). In addition, any , , or arguments which have default

November 27, 1993

:

)

)

)

)

)

geco

geco

1.4.5 The Index

1.5 Acknowledgments

GECO 7

1.5 Acknowledgments

(arg1 arg2 arg3)

((arg1) arg2 (arg3))

Generic Function

I.e.

Primary Method

Slot

Accessor

Initarg

e.g.

etc.

italics

typewriter

example-function

&optional

typewriter

example-function

class1 &optional 'default-value

example-slot

default-slot-value

example-slot-accessor

:example-initarg

2 0

values are shown parenthesized, with the default value speci�cation shown in

style type, since it is a Common Lisp literal.

[]

For methods, the second and subsequent lines specify the argument list, but also shows the

specialization of arguments. , specialized arguments are shown in parentheses, with the

specializing class following the argument, and in style type, since it is a literal

reference to a class.

[]

Variables, constants, and slots are speci�ed in a similar manner. However since these enti-

ties may have default or initial values, such values are shown on indented lines immediately

following the ag line. Similarly, class description ag lines may be followed by indented

lines identifying any superclasses of the class.

[]

Slot descriptions always follow the description of the class on which they are directly de�ned

(descriptions of inherited slots are not repeated). Accessor functions and initargs for slots

(if any) are speci�ed on ag lines immediately following the descriptions of their slots.

[]

[]

All of 's de�nitions are doubly indexed, by both name and type of de�nition (,

function, class, slot,). In addition, all references to -de�ned entities in the body

of the text are indexed. To aid the user in �nding the de�nition in a potential forest of

references, the page number of the de�nition(s) appears in . Note that in some cases,

there may be more than one de�nition of a method, and the generic function de�nition is

generally repeated in these cases as well.

I want to thank Randy Fennel and Al Underbrink for their help in beta-testing the software,

and for their comments on early drafts of this documentation. Of course I am solely

responsible for any errors which surely remain. I also want to thank John Koza for kindly

November 27, 1993

C

:GECO 8

1.5 Acknowledgments

2 0

permitting the reproduction of his implementation of the Park-Miller randomizer, Kate

Juli� for inspiring the multi-chromosome features, and Larry Yaeger for publishing the

implementation of gray code translation after which my implementation (section 3.8.3) is

patterned.

November 27, 1993

Geco

Ecosystem

Population

2.1 Overview of Classes

abstractions not class

Geco

geco

Geco

Geco

geco

geco

Chapter 2

GECO Concepts and Structure

prede�nes classes and methods to simplify the process of constructing a GA for a

speci�c application. This section discusses 's approach to implementing GAs through

a discussion of the classes, methods, and related functions it implements.

is an object-oriented library which implements an environment primarily in the

form of classes and methods. 's classes are based on the natural concepts which

are part of the genetic evolutionary paradigm. The principle classes form a hierarchy of

(a hierarchy) which parallel the natural concepts of genetic evolution.

Objects which are higher in this abstraction hierarchy `contain' objects which are lower in

the hierarchy (see Figure 2.1). We (GA developers) build on these classes and methods to

describe and implement our GAs. The terminology and concepts used within may

di�er slightly from other conventional usage, but they hopefully are internally consistent,

and should be intuitive to a reader who is conversant with the concepts employed by GAs.

Here are the principle classes in the hierarchy of genetic abstractions, starting from

the top:

A combination of the population undergoing evolution, and the genetic plan

which controls the evolution.

GAs evolve populations of organisms. The current population at any time is

the set of organisms which can interact with one another to produce new organisms.

9

ecosystem

genetic-plan

organism

chromosome(s)

population

population-statistics

organism

chromosome(s)

organism

chromosome(s)

:

Geco

Geco

GECO 10

2.1 Overview of Classes

2 0

Figure 2.1: 's classes form an abstraction hierarchy

November 27, 1993

:

i.e.

etc.

geco

geco

geco

Geco

genotype

phenotype

score

loci

alleles

gene

regenerates

score

GECO 11

Organism

Chromosome

Genetic Plan

Population Statistics

2.1 Overview of Classes

2 0

An organism combines all the related information about a single structure in

the search space being explored by the GA. An organism is a member of a popula-

tion, generally has a coded genetic description (its), and interacts with its

environment as the individual (its) coded by its genotype. Each organism

also has a , which is used to establish an organism's relative value toward solving

the speci�c problem posed for solution by the GA.

A structured component of an organism's genotype, which generally is the

unit which is operated upon by genetic operators. Many GAs use only a single

chromosome per organism, but sometimes there are reasons to use more than one.

Each chromosome is generally composed of a vector of (sites), each of which may

take on one of a set of values (the for that locus). The arity of each locus is

typically the same for all loci of a single chromosome, but is su�ciently general

that arity may be a function of locus. Genetic interpretation is normally (but not

necessarily) a function of position on the chromosome.

Terminological aside: a might be de�ned as a functional or operational

unit by which genetic information is transferred from parent to o�spring,

which may consist of one or more alleles from one or more loci, which

may or may not be contiguous on a chromosome. The exact de�nitions

of genes and alleles in the context of GAs has historically been rather

vague. Only recently have attempts been made to de�ne them formally;

see [Rad92a, Rad92b].

There are also some other important classes which, though they aren't part of the genet-

icly-based abstraction hierarchy, play important roles in 's operation.

The overall strategy which determines how an ecosystem , ,

how new organisms are created from older organisms. This generally includes the

overall scheme for selection of organisms for reproduction, replacement, and manip-

ulation by genetic operators. Methods de�ned on this class will generally determine

how a particular GA implementation di�ers from the canonical GA described by

Holland. An instance of this class is a component of each ecosystem.

Information accumulated about (at least) the s of the mem-

bers of a population, used for normalizing the scores across the population, An

instance of this class is a component of each population.

In addition, there are other classes in . Some of these classes specialize on the classes

above, while others serve auxiliary purposes.

November 27, 1993

1

1

:

etc.

mixed in

geco

geco

Geco

abstract class

mixin class

abstract class

organism

phenotype

phenotype organism

population

population

A is a class which is with other classes to collectively form the set of parent classes

of a new class. A mixin class is almost always an .

GECO 12

Organism Phenotype Mixin

Maximizing & Minimizing Score Mixins

Generational Population

Binary Chromosome

Sequence Chromosome

Gray Code Translation

2.1 Overview of Classes

2 0

An (one not intended to be instantiated),

which may be included as a parent class in a subclass of the class. This

class adds a slot to the subclass, along with relevant behavior, when a

phenotype must actually be created from the genotype. Since this is not always

necessary, the slot has been abstracted out of the class.

Two abstract classes, one of which should

be included as one of the superclasses of an application's population class. That is,

an instantiable subclass of must also be a subclass of one of these classes

(using multiple inheritance). The mixin you choose to include in your population

class will determine whether GECO tries to maximize or minimize the organisms'

scores in the population being evolved.

A subclass of which provides explicit support for

the standard generational style of GA. Eventually may contains support for

other styles of GA, possibly including parallel populations, steady-state populations,

This class (or a future alternative) should be included as one of the superclasses

of an application's population class.

A special kind of chromosome | When each locus of a chromo-

some may only take on one of two alleles, then each of the loci are binary, and the

chromosome which they compose is binary. It is very common for a GA to require

only binary chromosomes, and so provides support for this special case.

Another special kind of chromosome | When each locus of

the chromosome is treated as a unique item of a sequence, and the chromosome itself

speci�es a permutation of the sequence. This is another common kind of chromosome,

used for applications such as the Traveling Sales-rep Problem (TSP).

A special translation table for converting to and from gray

coded representations of a speci�c number of bits. Some applications of GAs using

binary chromosomes work better if the genetic coding scheme for some parameters is

a gray code.

November 27, 1993

:

2

2

�

�

�

e.g.

evolve

GECO.system

tail recursion

score

score

Regenerate

2.2 Basic Flow of Control

geco

Geco

geco

geco

Geco

geco

geco

GECO 13

Initialization:

Evolution:

{

{

2.2 Basic Flow of Control

This recursive invocation could lead to `stack overow' or similar error conditions in many languages.

In Lisp, this particular kind of recursion (called) is a special case which can be recognized

by the compiler and implemented (very e�ciently) as simple iteration. The result is an implementation

which is concise, clear, and e�cient. For those implementations which do not provide this optimization,

an equivalent iterative de�nition is provided, which can be selected using conditional compilation options

speci�ed in the �le. See the comments in that �le for details.

2 0

Assuming that the appropriate de�nitions have been made to extend for a speci�c

GA implementation, the basic operation of a typical GA is as follows:

Make an instance of the ecosystem class or subclass which will be used

for the GA. then automatically creates instances of the appropriate classes for

the genetic plan and the population. Creating the initial population instance in turn

causes the creation of the initial organism instances which belong to the population,

each of which is initialized with random chromosomes of the appropriate classes (see

Figure 2.2).

Invoking on the ecosystem causes to evolve the population (see

Figure 2.3). This consists of repeating the following steps:

Evaluate each of the organisms in the current population, recording a for

each one.

Calculate population statistics, normalized s for each organism, and nor-

malized population statistics.

Determine if the GAs termination condition has been met. If it has, then ter-

minate. Otherwise:

the population. This is where most of the customizing is done

for a new GA in . This typically includes selecting members of the

previous population to participate in creating the members of the new pop-

ulation. provides a number of prede�ned functions for performing

the selection and for creating the new population based on members of

the previous one, , via reproduction, and various kinds of crossover and

mutation.

Recursively evolve the result.

When supplied with the appropriate information, can perform much of the book-

keeping, initialization, and control automatically. This is made possible by the built-in

links between objects which are built upon the classes (see Figure 2.4).

November 27, 1993

make—organisms

make—organism

shared—initialize

make—

make—

—shared initialize

—make—loci vector

— —pick random alleles

— — —

organism

chromosomes

chromosome

chromosome

⊕

pick random alleles scramble alleles

ecosystem
shared—initialize

make-population

—shared initialize
population

size

make-population-vector

make-genetic-plan plan

evolve

evaluate
(ecosystem)

evaluate
(population)

decode evaluate
(organism)

normalize—score
(population)

normalize—score
(organism) compute—normalized—statistics

make—population—statistics

population-statistics
shared-initialize

compute-statistics

evolution—termination—p

evaluation-limit generation-limit converged-p

convergence—threshold—margin

convergene-fraction

as-good-as-test

regenerate
(ecosystem)

(population)
regenerate

make—population • • •

evolve

:

Geco

Geco

GECO 14

2.2 Basic Flow of Control

2 0

Figure 2.2: Call hierarchy for initialization of 's principle structures

Figure 2.3: Call hierarchy for 's evolutionary processing

November 27, 1993

ecosystem genetic-plan

population population-statistics

organism chromosome

plan
population
generation-number
evaluation-number

ecosystem
organisms
size
statistics

population
genotype
[phenotype]
score
normalized-score

ecosystem
statistics
generation-limit
evaluation-limit

population
<statistics>

organism
loci

:

Geco

GECO 15

2.2 Basic Flow of Control

2 0

Solid head arrows indicate a one-to-one link;

hollow head arrows indicate a one-to-many link.

Figure 2.4: Interrelationships between objects

November 27, 1993

�

�

ag line

slots

i.e.

class-name

class-name

class-name

geco

geco

geco geco

geco

geco

geco

geco geco

Geco

Chapter 3

Details of GECO Classes and

Functionality

This chapter provides a more detailed discussion of each of 's classes, and the func-

tionality implemented by their methods. This functionality includes both the state retained

by instances of each class (their), and the functions (both generic and otherwise) which

operate on those instances.

Even with all the functionality which implements, it will still be necessary to de�ne

some things which are speci�c to your application. Generally this will be done by special-

izing 's classes (, de�ning some subclasses of 's builtin classes), and adding

a few method de�nitions to override and/or extend some of 's default behaviors.

Terminology Notes:

In the material which follows, a statement which refers to `an instance of a

class' means that the instance is of the class or one of it's subclasses. If

the intent is to restrict the instance to being of the named class, excluding subclasses,

the wording will be of the form `an instance of the class.'

In the descriptions of the methods, it will often be necessary to distinguish between a

generic function, a method for the generic function, and the speci�c method supplied

by . A generic function and a method (as specialized in the above the

description) are both parts of a functional protocol which expects to be honored.

The description of the -supplied method speci�es hot the -supplied method

implements (ful�lls) the requirements of this protocol. may de�ne multiple

methods (specialized for di�erent classes) to implement the generic function protocol

for di�erent classes.

16

:

)

)

)

)

)

)

)

ecosystem

geco

geco

geco

3.1 The Ecosystem Class

GECO 17

Instance Allocated Slots

3.1 The Ecosystem Class

i.e.

Class

Slot

Accessor

Slot

Accessor

gen-

eration

Slot

Accessor

ecosystem

ecosystem

population

population

population

generation-number

0

generation-number

evolve

ecosystem evolve

evaluation-number

0

evaluation-number

evaluate

organism

2 0

For each class, the following sections will present the slots which are present in instances of

the class (, the values stored with each instance) and the functionality which has been

de�ned for use with instances of the class (and its subclasses). Generally, GAs implemented

with will not instantiate these classes. Instead, it will be more common to de�ne

subclasses which extend these classes (via added slots and methods) and specialize them

(by overriding and/or extending inherited methods).

An is the highest level abstraction in a implementation. It is also the

handle for manipulating a particular run of a GA. Since there may be more than one

instance of an in existence at one time, it is possible to use to create

applications which use more than one GA at the same time. The individual GAs may be

competing, working on separate aspects of the same problem, or they may be completely

independent.

[]

[]

[]

An instance of a class. The population of an ecosystem is the set of organisms

which are being evolved.

[]

[]

An integer, initially 0, which is incremented each time the population enters a new

. A new generation is created each time the function is invoked on an

instance (including 's self-invocations).

[]

[]

An integer, initially 0, which counts the number of times the function is applied

to an instance.

November 27, 1993

:

geco

)

)

)

)

)

)

)

Slot

Accessor

Initarg

Initarg

Initarg

Initarg

Initarg

GECO 18

Instance Creation and Initialization

3.1 The Ecosystem Class

plan

plan

genetic-plan

genetic-plan

population plan ecosystem

population

plan plan

population

ecosystem

:plan-class

genetic-plan ecosystem

:pop-class

population ecosystem

:pop-size

ecosystem population

:generation-limit

ecosystem

:evaluation-limit

ecosystem

2 0

[]

[]

An instance of a class.

The number of generations and evaluations are tracked by so that the GA can be

terminated based on the number of generations or evaluations exceeding some speci�c

maximum limits, speci�ed by the GA implementor. These limits are among the slots of

the class .

The and are distinguished from the so that their classes

may be specialized independently. Thus an instance of a single class may

be manipulated using di�erent s, while instances of a single may be used with

di�erent s.

The instance initialization has been extended to support the following additional

initargs:

[]

Provide the class for the to be used by the .

[]

Provide the class for the instances to be created by the .

[]

Speci�es the size to be used when the creates instances.

[]

Speci�es the maximum number of generations which the will be allowed to

evolve.

[]

Speci�es the maximum number of evaluations which the will be allowed to

perform.

November 27, 1993

:

CLOS

)

)

)

)

geco

geco

GECO 19

Specialized Methods

3.1 The Ecosystem Class

Generic Function

Primary Method

Generic Function

Primary Method

ecosystem population-class :size :random

(ecosystem) population-class :size :random

ecosystem

population-class

:size :random

ecosystem genetic-plan-class

(ecosystem) genetic-plan-class

ecosystem genetic-plan-

class ecosystem

ecosystem make-

instance

ecosystem

population plan make-

population make-genetic-plan

make-population t

:random

:generation-limit :evaluation-limit generation-

limit evaluation-limit plan

make-population

&key

make-population

ecosystem &key

population

make-instance

make-genetic-plan

make-genetic-plan

ecosystem

genetic-plan

make-instance

:ecosystem

2 0

No special functions for the creation of instances have been de�ned, since

and the standard protocol it follows provide all the necessary functionality.

The initialization for instances has been extended to provide for the automatic

creation and initialization of the and instances and slots. The

and generic functions (described next) are used to sup-

port customization of these actions. The call to passes a value of for

the keyword argument, causing the initial population to be initialized to random

organisms. If and are speci�ed, the

and slots in the instance are also initialized.

[]

[]

This function provides an abstract interface to creation of the of .

The primary -supplied method invokes on the class ,

passing the argument, which determines the population size, and the argu-

ment, so that the population can be created with random organisms (intended for creation

of the initial population).

[]

[]

This function provides an abstract interface to creation of the instance for

. The -supplied primary method invokes on

, and also supplies as the keyword argument so that the plan

can be linked to the ecosystem (and vice-versa).

November 27, 1993

1

1

:

)

)

)

)

)

)

)

)

geco

geco

geco

3.2 The Population Class

See the discussion in the footnote on page 13

GECO 20

Instance Allocated Slots

3.2 The Population Class

ecosystem

(ecosystem)

ecosystem

thing genetic-plan

(ecosystem) genetic-plan

thing

ecosys-

tem genetic-plan

Generic Function

Primary Method

Generic Function

Primary Method

organisms

individuals

Class

Slot

Initarg

Accessor

evolve

evolve

ecosystem

evaluate

evolution-termination-p

population regenerate

evaluate

evaluate

ecosystem

ecosystem

evaluate population evaluate

population

population

population

ecosystem

:ecosystem

ecosystem

2 0

[]

[]

This is the principle function which will be used by GA developers to invoke their algorithm.

The -supplied primary method calls on , and if the termination

condition has not been reached (see), creates a new generation

of its via the function, and recurses to evolve some more .

[]

[]

The purpose of this function is to cause to be evaluated according to the speci�ed ge-

netic plan. The -supplied primary method for instances evaluates

by calling on its with . (Also see the

method specialized for the class , on page 23.)

A population is the most global structure upon which a GA operates. Although genetic

operators are applied to the members (in 's terminology, though they are

often called) of a population, it is at the level of the population that the GA is

really working.

[]

Instances of classes collect all the organisms of a generation.

[]

[]

[]

Provides a link back to the ecosystem to which the population belongs.

November 27, 1993

:

geco

geco

)

)

)

)

)

)

)

)

)

genetic plan

GECO 21

Instance Creation and Initialization

3.2 The Population Class

Slot

Accessor

Slot

Initarg

Accessor

i.e.

Slot

Initarg

Accessor

Initarg

organisms

organisms

size

nil

:size

size

nil

organisms nil

statistics

:statistics

statistics

population-statistics

population-statistics population

make-population

population

population

organisms make-organisms-

vector make-organisms

make-organisms-vector size nil

make-organisms size :random nil

:random

make-organisms

2 0

[]

[]

A vector, which contains all the organisms in the population.

[]

[]

[]

Either or an integer, which indicates the size of the population, , the size of the vector

in the slot. When , the organism vector will not be created automatically.

[]

[]

[]

An instance of a class, which holds statistics needs for the

population. The class is distinct from the so that

their classes may be specialized independently.

The generic function (see page 19) is the interface for creation of

instances.

The initialization for instances of has been extended to provide for auto-

matic creation and initialization of the vector. The functions

and are used to permit customization of these initialization ac-

tions; is called when the slot has a non- value, and

is called only when both and (below) have non- values.

It is the responsibility of the to create the organisms after the initial generation.

The population instance initialization has been extended to support the following additional

initarg:

[]

The value of this keyword is passed to , and is intended to support auto-

matic initialization of the initial population to random organisms.

November 27, 1993

:

)

)

)

)

)

)

geco

geco

geco

GECO 22

Specialized Methods

3.2 The Population Class

Generic Function

Primary Method

Generic Function

Primary Method

i.e.

Generic Function

Primary Method

i.e.

e.g.

population size

(population) size

population size

population :random

(population) :random

population

:random

:random

population :random :no-chromosome

(population) :random :no-chromosome

population :random

:no-chromosome

population

:random :no-chromosomes

population

make-organisms-vector

make-organisms-vector

population

make-

array

make-organisms

&key

make-organisms

population &key

nil

make-organism

make-organism

make-organism

&key

make-organism

population &key

organism-class nil

nil

make-

instance

make-instance

2 0

Note that most (if not all) of the generic functions in Section 3.10, Selection Methods, have

methods which are specialized on the class.

[]

[]

This function provides an abstract interface to creation of the population's organisms vector

(the vector which holds 's organisms). The argument determines the size

of the vector. The -supplied primary method uses the Common Lisp function

to create an array of the speci�ed size.

[]

[]

This function provides an abstract interface to creation of the organisms in 's

organisms vector. The argument, when non- , causes all the new organisms

to be random (, have randomly chosen chromosomes). The -supplied primary

method invokes for each position in the organisms vector. The

argument is passed to each call to .

[]

[]

This function provides an abstract interface to creation of a single organism based on the

of . The argument, when non- , causes the new

organism to be random (, have randomly chosen chromosomes). The

argument, when non- , causes the organism to be created without chromosomes, avoiding

wasted work when the chromosomes will be supplied by other mechanisms, , genetic

operators. The -supplied primary method passes to the call to

so that the organism can have a back-link to the population to which it belongs.

The and arguments are passed to .

November 27, 1993

2

2

:

geco

score

)

)

)

)

)

)

)

generics.lisp

Geco

geco

geco

geco

GECO 23

3.2 The Population Class

There are comments at the beginning of the �le which summarize the functions which

should or must be de�ned to implement a working GA using .

Generic Function

must implement the primary method

Generic Function

Primary Method

Generic Function

Primary Method

Generic Function

Primary Method

population

population

thing genetic-plan

(population) (genetic-plan)

thing genetic-plan

population

popula-

tion

population

(population)

population population

population

population

(population)

population

population

organism-class

population

population

evaluate

evaluate

population genetic-plan

evaluate

score

normalize-score make-population-statistics

make-population-statistics

make-population-statistics

population

population-statistics

population-statistics-class

make-instance

compute-statistics

compute-statistics

population

compute-statistics

compute-statistics

population-statistics

2 0

[]

This function returns the class to be used to create organisms which will become members

of . The GA developer for all subclasses

of the class . does not provide a default primary method specialized on

the class.

[]

[]

This function evaluates according to . This method assures that each or-

ganism in is evaluated. The -supplied primary method only calls

on an organism if the organism doesn't already have a in its slot. After

has been evaluated, and are called

to assure that normalized scores and statistics have been computed for the population.

[]

[]

This function provides an abstract interface to creation of the

instance for , based on the of . The

-supplied primary method passes to so that the instance

can have a back-link to the population to which it belongs.

[]

[]

This function provides an abstract interface for computing statistics for . This

method provieds a place for a population class to provide for customization of statistics

computation. The -supplied primary method simply calls on

the statistics instance of . (Also see the description of

specialized on the class on page 66.)

November 27, 1993

th

score

:

c

b

c b

c

)

)

)

)

�

)

)

geco

geco

GECO 24

3.2 The Population Class

Generic Function

Primary Method

I.e.

Generic Function

Primary Method

Generic Function

Primary Method

population

(population)

population

thing statistics genetic-plan

(population) (statistics)

(genetic-plan)

thing

population

population

genetic-plan population-statistics

population

(population)

population.

compute-binary-allele-statistics

compute-binary-allele-statistics

population

fixnum

fixnum

normalize-score

normalize-score

population population-statistics

genetic-plan

population normalize-score

compute-normalized-statistics

population-statistics-class

population-statistics-class

population

population population-

statistics

2 0

[]

[]

This function returns a list of vectors (one per binary chromosome in the organisms of

) of counts (s), by locus, of non-zero alleles. For example, if the organisms

in a population contain binary chromosome (and any number of non-binary chromosomes),

and each binary chromosome contains loci, then this function will return a list containing

vectors of �xnums. Each in the returned vectors is a count of non-zero alleles in

the entire population at the locus whose index corresponds to the index into the vector

of counts. , if the third count in the �rst vector is 7, then the entire population contains

7 non-zero alleles in locus 3 of the �rst binary chromosome of each organism.

[]

[]

This function computes the normalized (s) for . This method computes the

normalized scores for all organisms in . The -supplied primary method

for invokes (see page 35) for each organism in ,

according to the , and updates with normalized values

using the function .

There are a number of di�erent ways to normalize the scores. With some plans and evalu-

ation functions, it may not even be necessary, though beware that the score should always

be 0 (see Chapter 4 of [Gol89], under the sections on Scaling Mechanisms and Ranking

Procedures).

[]

[]

This function returns the population-statistics class which will be used for The

-supplied primary method specialized for the class returns

.

November 27, 1993

:

)

)

)

geco

geco

geco

geco

geco

3.3 Subclasses of Population

converged

scores

mixin classes

population

(population)

population

population

population

population

GECO 25

Instance Creation and Initialization

3.3 Subclasses of Population

Generic Function

Primary Method

as good as

maximize minimize

as good

as better than

Class

etc.

converged-p

converged-p

population

score

convergence-fraction

normalized-score convergence-

threshold-margin

generational-population

population

regenerate

make-population

population

2 0

[]

[]

This function is a predicate which indicates whether has , which is

useful as a termination condition. The -supplied primary method de�nes convergence

as either of the following:

1. All organisms in have the same ; or

2. At least a portion of (speci�ed by the function)

has a which is the value speci�ed by the

function.

Note that this allows to either or . The mechanism for

determining whether maximizes or minimizes, and hence how it determines

or , is determined by mixing one of two classes with the population class used

by the GA. These are described below, in section 3.4.

[]

This class is a subclass of which provides explicit support for the `standard'

generational style of GA. The class has no slots, but methods described elsewhere specialize

on this class (see , page 58).

Eventually may contains support for other styles of population handling, possibly

including parallel sub-populations, steady-state populations,

The generic function (see page 19) is the interface for creation of

instances of and its subclasses.

November 27, 1993

:

geco

)

)

)

)

)

)

)

)

3.4 Population Mixin Classes

GECO 26

Specialized Methods

3.4 Population Mixin Classes

population

(population)

(population)

population

(population)

(population)

population

Class

Class

Generic Function

Primary Method

Primary Method

Generic Function

Primary Method

Primary Method

maximizing-score-mixin

minimizing-score-mixin

maximizing-p

maximizing-p

maximizing-score-mixin

maximizing-p

minimizing-score-mixin

minimizing-p

minimizing-p

maximizing-score-mixin

minimizing-p

minimizing-score-mixin

t nil

2 0

[]

[]

Neither of these classes has any slots or has special provisions for instance creation or

initialization.

Both classes implement methods for the following generic functions:

[]

[]

[]

[]

[]

[]

These functions permit algorithms to e�ciently determine whether the is min-

imizing or maximizing. The -supplied methods return either or as appropriate

for their class.

November 27, 1993

:

:

:

:

)

)

)

)

)

)

)

)

)

geco

geco

geco

GECO 27

3.4 Population Mixin Classes

population

(population)

(population)

population

population

(population)

(population)

population

population

(population)

(population)

population

Generic Function

Primary Method

Primary Method

right

Generic Function

Primary Method

Primary Method

right

Generic Function

Primary Method

Primary Method

convergence-fraction

convergence-fraction

maximizing-score-mixin

convergence-fraction

minimizing-score-mixin

converged-p maximizing-

score-mixin minimizing-score-mixin

convergence-threshold-margin

convergence-threshold-margin

maximizing-score-mixin

convergence-threshold-margin

minimizing-score-mixin

converged-p

maximizing-score-mixin

minimizing-score-mixin

as-good-as-test

as-good-as-test

maximizing-score-mixin

as-good-as-test

minimizing-score-mixin

score

maximizing-score-mixin

#'>= minimizing-score-mixin #'<=

2 0

[]

[]

[]

This function returns the convergence-fraction value which should be used for by

the function. The -supplied primary methods for both the

and the classes return 0 95. These values are not

necessarily the numbers in any real sense, but they are probably reasonable for many

applications. Some applications may want to provide di�erent values, and possibly even

adaptive methods for specialized subclasses.

[]

[]

[]

This function returns the convergence-threshold-margin value which should be used for

by the function. The -supplied primary method provided

for the class returns 0 95, and the method provided for the

class returns 0 05. These values are not necessarily the

numbers in any real sense, but they are probably reasonable for many applications. Some

applications may want to provide di�erent values, and possibly even adaptive methods for

specialized subclasses.

[]

[]

[]

This function returns a function of two numeric arguments, which when applied to s

from organisms in , indicates whether or not the �rst score is as good as the sec-

ond. The -supplied primary method for the class returns

, and the method provided for the class returns .

November 27, 1993

:

)

)

)

)

)

)

)

)

)

geco

geco

geco

GECO 28

3.4 Population Mixin Classes

Generic Function

Primary Method

Primary Method

Generic Function

Primary Method

Primary Method

Generic Function

Primary Method

Primary Method

population

(population)

(population)

population

population

(population)

(population)

population

population

(population)

(population)

population

better-than-test

better-than-test

maximizing-score-mixin

better-than-test

minimizing-score-mixin

scores

maximizing-score-mixin

#'> minimizing-score-mixin

#'<

best-organism

best-organism

maximizing-score-mixin

best-organism

minimizing-score-mixin

maximizing-score-

mixin max-organism minimizing-score-

mixin min-organism

worst-organism

worst-organism

maximizing-score-mixin

worst-organism

minimizing-score-mixin

maximizing-score-

mixin min-organism minimizing-score-

mixin max-organism

2 0

[]

[]

[]

This function returns a function of two numeric arguments, which when applied to

from organisms in , indicates whether or not the �rst score is better than the

second. The -supplied primary method provided for the

class returns , and the method provided for the class returns

.

[]

[]

[]

This function returns the best organism in the corresponding population from population

statistics of . The -supplied primary method for the

class uses , and the method provided for the

class uses .

[]

[]

[]

This function returns the best organism in the corresponding population from population

statistics of . The -supplied primary method for the

class uses , and the method provided for the

class uses .

November 27, 1993

3

3

:

)

)

)

)

)

)

geco

geco

geco

3.5 The Organism Class

GECO 29

3.5 The Organism Class

organism

phenotype genotype

score

Generic Function

Primary Method

Primary Method

Generic Function

Primary Method

Primary Method

population

(population)

(population)

population

population

(population)

(population)

population

In some kinds of Learning Classi�er Systems [HR78, HHNT87], the so-called `Michigan' approach (for

the University of Michigan), each member of a population represents a rule, and the entire population

cooperatively evolves as a ruleset. By way of contrast, in the `Pitt' approach (for the University of

Pittsburg) each member of a population represents an entire ruleset.

best-organism-accessor

best-organism-accessor

maximizing-score-mixin

best-organism-accessor

minimizing-score-mixin

population-

statistics

maximizing-score-mixin

#'max-organism minimizing-score-mixin

#'min-organism

worst-organism-accessor

worst-organism-accessor

maximizing-score-mixin

worst-organism-accessor

minimizing-score-mixin

population-

statistics

maximizing-score-mixin

#'min-organism minimizing-score-mixin

#'max-organism

2 0

[]

[]

[]

This function returns a function which can be applied to an instance of the

class of to obtain the best organism in the corresponding popula-

tion. The -supplied primary method for the class returns

, and the method provided for the class returns

.

[]

[]

[]

This function returns a function which can be applied to an instance of the

class of to obtain the worst organism in the corresponding popula-

tion. The -supplied primary method for the class returns

, and the method provided for the class returns

.

An is a member of the population which is being evolved by the GA. Typically an

organism represents a single distinct solution to the problem which the GA is set to solve,

although sometimes an entire population of organisms cooperate to constitute a solution.

In , an instance of an organism class is a collection of information related to a popu-

lation member. This may include an explicit representation of the population member (the

organism's), or a coded representation (the), or both. An evaluation of

the organism (its) is also present, so that the GA can have some way to determine

which organisms are better than others, and to what extent.

November 27, 1993

:

)

)

)

)

)

)

)

)

)

)

chromosomes

GECO 30

Instance Allocated Slots

3.5 The Organism Class

Class

Slot

Initarg

Accessor

Slot

Initarg

Accessor

Slot

Initarg

Accessor

organism organism-phenotype-mixin

organism

population

nil

:population

population

genotype

nil

:genotype

genotype

score

nil

:score

score

nil

2 0

Typically, during the operation of the GA, the genetic operators manipulate the organism's

genotype, and then that is converted into the phenotype, which is then evaluated to produce

a score. The genotype typically consists of one or more , which encode the

features of the phenotype. In some GAs the genotype is bypassed, and the genetic operators

manipulate the phenotype directly, in which case the genotype is empty. In other GAs, the

organism's score can be determined directly from the genotype, and the conversion from

genotype to phenotype is completely omitted. The phenotype is not included in the basic

class, but as a mixin described later (see , page 39).

[]

[]

[]

[]

Provides a link back to the population to which the organism belongs.

[]

[]

[]

A list of zero or more chromosomes, which form an encoded representation of the organism.

[]

[]

[]

A (raw) numeric representation of the value of the organism to the GA, or (initially) ,

indicating that the organism hasn't been evaluated.

November 27, 1993

:

geco

)

)

)

)

)

)

:random

(organism) stream

organism

Slot

Initarg

Accessor

Initarg

Initarg

Primary Method

GECO 31

Instance Creation and Initialization

Specialized Methods

3.5 The Organism Class

normalized-score

nil

:normalized-score

normalized-score

score nil

make-organism

organism

organism

:random

genotype

make-chromosomes

:no-chromosomes

nil

print-object

organism

print-object

print-unreadable-object

normalized-score

2 0

[]

[]

[]

A normalized version of , with respect to the rest of the population, or , indicating

that the organism either hasn't been evaluated, or that the scores haven't been normalized.

The generic function (see page 22) is the interface for creation of

instances.

The initialization for instances of has been extended to support the following

additional initargs:

[]

The initialization for organism instances has also been extended to check the slot,

and if it is null it will create chromosomes for the organism, using the

function, passing the value of the keyword argument. This is intended to support

automatic initialization of the initial population.

[]

When non- , this initarg suppresses creation of the new organism's chromosomes.

[]

This method specializes the standard Common Lisp function for organisms.

It uses the standard Common Lisp function , includes the type

and identity of , and also causes their and genotype to be

included in the printed representation.

November 27, 1993

:

)

)

)

)

scores

geco

geco

GECO 32

3.5 The Organism Class

Generic Function

Primary Method

not

e.g.

Generic Function

Primary Method

is

organism :new-population

(organism) (:new-population organism)

organism

:new-population

organism

organism organism

organism :new-population

(organism) (:new-population organism)

:new-population

organism

organism

copy-organism

&key

copy-organism

organism &key (population)

score normalized-

score copy-organism-with-score

copy-chromosome

organism-phenotype-mixin phenotype

:around copy-organism copy-

organism-with-score

call-next-method

organism :around

copy-organism-with-score

&key

copy-organism-with-score

organism &key (population)

score

copy-organism normalized-score

normalized-

score

copy-organism

organism-phenotype-mixin

copy-organism

phenotype

2 0

[]

[]

This function creates and returns a copy of , modi�ed to be in the population

speci�ed by the argument. The (neither nor

) of are copied to the new organism (see).

The -supplied primary method will always return an organism of the same class as

, and uses to copy each chromosome in the genotype of

to initialize the genotype of the returned organism.

This function would generally be used to make a copy which will be modi�ed (, by a

genetic operator), thereby invalidating its score.

When using , it is important to be sure that the

slot is copied properly when copying an organism. Depending on the representation of the

phenotype, it may or not be worthwhile to copy it whether or not it will subsequently be

modi�ed by genetic operators. In any case, copying anything more complex than an atom

requires consideration of application and representation speci�c details.

It may be desirable to de�ne an method on either or

to copy the phenotype (though it should only be necessary to spe-

cialize one of these functions, not both). Alternatively, a specialized class's primary method

(on one of these functions) could use to invoke the primary method of

class . If using an method, don't forget to return the copy.

[]

[]

Creates a copy of the organism in the population speci�ed by the argument,

which defaults to the same population as . The copied to the new

organism (see). The is not copied on the assumption

that the new organism will be part of a new population, and therefore the

will need to be recomputed within the context the rest of the new population. The

-supplied primary method uses to create the new organism.

If is an instance of a class which includes as one

of its superclasses, refer to the discussion under , above, regarding copying

the slot.

November 27, 1993

4

4

:

geco

)

)

)

)

)

loci vector

geco

geco

Geco

generics.lisp

GECO 33

3.5 The Organism Class

Generic Function

Primary Method

Generic Function

Primary Method

i.e.

Generic Function

must implement the primary method

There are comments at the beginning of the �le which summarize the functions which

should or must be de�ned to implement a working GA using .

make-chromosomes

&key

make-chromosomes

organism &key

nil

make-chromosome

chromosome-classes

chromosome-classes genotype

make-chromosome

&key

make-chromosome

organism &key

nil

make-instance

chromosome-classes

organism

organism

organism :random

(organism) :random

organism :random

:random

organism

organism chromosome-class :size :random

(organism) chromosome-class :size :random

chromosome-

class organism :random

:size

organism

organism organism

:size :random

organism

organism organism

2 0

[]

[]

This function makes and returns a complete set of chromosomes for . If is

non- , the chromosomes will have random alleles. The -supplied primary method

makes each chromosome with , and passes it the argument. The

classes of the chromosomes are obtained by calling the function. The

new chromosomes are collected into a list in the same order as the classes returned from

, and stored in the slot of , and also returned as

the result of the function. This method makes no attempt to determine the proper size for

each chromosome, relying on lower level methods to determine this (see page 42).

[]

[]

This function provides an abstract interface to creation of an instance of the class

which will become part of the genotype of . If is non- , the chro-

mosomes will have random alleles. The argument may be used to control the size of

the new chromosome, , the size of its . The argument is present so

that the chromosome can have a back-link to , and so that subclasses of

can specialize the chromosome creation process based upon the organism for which the

chromosome is intended. The -supplied primary method passes the and

arguments to .

[]

This function returns a list of classes to be used to create chromosomes for instances of the

class of of . The list should contain one class for each chromosome of ,

and the order of the classes will determine the order of the chromosomes in the organism

instances. The GA developer for all subclasses of

the class . does not provide a default primary method specialized on the

class.

November 27, 1993

:

5

5

geco

)

)

)

)

)

)

score

score

generics.lisp

geco

geco

Geco

geco

GECO 34

3.5 The Organism Class

Generic Function

Primary Method

Generic Function

Primary Method

Generic Function

:After Method

must implement the primary method

There are comments at the beginning of the �le which summarize the functions which

should or must be de�ned to implement a working GA using .

organism

(organism)

organism

organism

organism

(organism)

organism

organism

thing genetic-plan

(organism) (plan)

organism organism

or-

ganism organism

randomize-chromosomes

randomize-chromosomes

organism

chromosome-classes pick-random-alleles

genotype-printable-form

genotype-printable-form

organism

~A format

genotype

evaluate

evaluate

organism genetic-plan

score

organism organism

score

:after organism evaluation-

number

2 0

[]

[]

This function replaces all of the chromosomes belonging to (if any) with randomly

chosen chromosomes of the appropriate classes for . The -supplied primary

method determines the appropriate classes for the chromosomes by calling the function

, and uses the function so that the chosen

alleles will be valid for each locus of each chromosome.

[]

[]

This function returns a single string which is composed of the printable forms of each chro-

mosome belonging to . The -supplied primary method obtains the printable

form of each chromosome using the format directive with , and concatenates

them, with a space between each chromosome's string. The chromosomes' strings are in

the same order as the chromosomes in the slot of .

[]

[]

This function evaluates and return it's , saving it in 's slot.

Evaluating an organism is generally the most expensive (computationally) operation a

GA performs, therefore saving the score to prevent future evaluations of the organisms is

almost always worthwhile. For the same reason, it behooves the GA developer to make the

evaluation process as e�cient as possible.

The GA developer for all subclasses of the class

. does not provide a default primary method specialized on the

class. It is the responsibility of this primary method to perform the calculation of

's , to store it in 's slot, and to return it as the result of the

function.

The -supplied method on class increments the ecosystem's

.

November 27, 1993

6

6

:

eidetic

)

)

�

�

)

)

)

)

eidetic

eide eidos

geco geco

geco

geco

GECO 35

3.5 The Organism Class

organism statistics

statistics statistics

Generic Function

Primary Method

not

Generic Function

Primary Method

i.e.

Generic Function

Primary Method

organism population-statistics genetic-plan

(organism) (statistics)

(genetic-plan)

organism

statistics

thing-1 thing-2

(organism-1) (organism-2)

organism

(organism)

organism

normalize-score

normalize-score

organism population-statistics

genetic-plan

score

normalized-score

score min-score

max-score min-score

eidetic

eidetic

organism organism

eidetic

pick-random-chromosome

pick-random-chromosome

organism

pick-random-chromosome-index

I have been questioned regarding the use of the term , above. From Webster's Third New

International Dictionary of the English Language, Unabridged: \ : of, relating to, or having the

characteristics of eide, essences, forms, or images. Further: : plural of eidos, and : something

that is seen or intuited: a) in Platonism: idea, b) in Aristotelianism (1): form, essence (2): species." Thus,

eidetic can be used to indicate `of the same species,' which is the essence of my original intent.

2 0

[]

[]

This function computes the normalized value of 's , storing the result in the

slot. The invocation of functions responsible for collection of statistics

and normalization of scores is handled automatically by . The -supplied primary

method uses values from to calculate the normalized score as follows:

Note that this formula distributes the normalized scores over the interval [0:1]. This results

in normalized scores which are (in general) proportional to �tness, since all organisms

with the minimum �tness will have normalized scores of zero.

[]

[]

This function is a predicate, returning true if the organism arguments are equal, , of the

same class and have equal chromosomes. The -supplied primary method determines

equality of chromosomes by calling the function on each of the chromosomes of

the argument organisms.

[]

[]

This function returns a random chromosome from . The -supplied primary

method uses to pick the chromosome to return.

November 27, 1993

:

)

)

)

)

)

)

geco

geco

geco

3.5.1 Basic Genetic Operators

GECO 36

3.5.1 Basic Genetic Operators

Generic Function

Primary Method

Generic Function

Primary Method

Generic Function

Primary Method

pick-random-chromosome-index

pick-random-chromosome-index

organism

mutate-organism

&key

mutate-organism

organism &key

(pick-random-chromosome-index)

(nth (genotype))

(pick-locus-index)

mutate-chromosome

cross-organisms

&key

cross-organisms

organism organism organism organism

&key (pick-random-chromosome-index)

(pick-locus-index (nth (genotype)))

cross-chromosomes

organism

(organism)

organ-

ism

organism :chromosome-index :chromosome :locus-index

(organism)

(:chromosome-index organism)

(:chromosome chromosome-index organism)

(:locus-index chromosome)

organism

organism

:chromosome-index :chromosome

:locus-index

parent-1 parent-2 child-1 child-2 :chromosome-index :locus-index

(parent-1) (parent-2) (child-1) (child-2)

(:chromosome-index parent-1)

(:locus-index chromosome-index parent-1)

parent-1

parent-2 child-1 child-2

:chromosome-index :locus-index

2 0

[]

[]

This function returns a random index into the list of chromosomes belonging to

. The -supplied primary method biases the selection by the relative sizes of each

chromosome.

[]

[]

This function mutates randomly. The keyword arguments can be used to control

which particular chromosome to mutate, and where it should be mutated. The -

supplied primary method mutates the chromosome of indicated by either the

argument or the argument, picking it randomly otherwise,

as shown above. The locus to mutate is speci�ed by the argument, which is

otherwise chosen randomly, as shown above. The actual mutation of the chromosomes is

performed by calling the function .

[]

[]

This function performs a simple crossover between the two parent organisms and

, storing the results in the two child organisms and . The keyword

arguments can be used to control which particular chromosomes to a�ect and where. The

-supplied primary method performs the crossover on the chromosome from both par-

ents indicated by at the locus indicated by , choosing them

randomly otherwise, as shown above. The actual crossover of the chromosomes is performed

by calling the function .

November 27, 1993

:

)

)

)

)

geco

geco

GECO 37

3.5.1 Basic Genetic Operators

Generic Function

Primary Method

Generic Function

Primary Method

uniform-cross-organisms

&key

uniform-cross-organisms

organism organism organism organism

&key (pick-random-chromosome-index) 0.5

uniform-

cross-chromosomes

2x-cross-organisms

&key

2x-cross-organisms

organism organism organism organism

&key (pick-random-chromosome-index)

(pick-locus-index (nth (genotype)))

(pick-locus-index (nth (genotype)))

2x-cross-chromosomes

parent-1 parent-2 child-1 child-2 :chromosome-index

(parent-1) (parent-2) (child-1) (child-2)

(:chromosome-index parent-1) (:bias)

parent-1 parent-2 child-1

child-2

:chromosome-index

:bias

parent-1 parent-2 child-1 child-2 :chromosome-index :locus-index1

:locus-index2

(parent-1) (parent-2) (child-1) (child-2)

(:chromosome-index parent-1)

(:locus-index1 chromosome-index parent-1)

(:locus-index2 chromosome-index parent-1)

parent-

1 parent-2 child-1 child-2

:chromosome-index

:locus-index1 :locus-index2

2 0

[]

[]

This function performs a uniform crossover [Sys89, SD91, Dav91] between the two parent

organisms and , storing the result in the two child organisms and

. The keyword arguments can be used to control which particular chromosomes

to a�ect and where. The -supplied primary method performs the crossover on the

chromosome from both parents indicated by , choosing it randomly

otherwise, as shown above, and using a bias as indicated argument, defaulting as

shown above if it is not speci�ed. The actual crossover is performed by calling

.

[]

[]

This function performs a two-point crossover between the two parent organisms

and , storing the result in the two child organisms and . The

keyword arguments can be used to control which particular chromosomes to a�ect and

where. The -supplied primary method performs the crossover on the chromosome

from both parents indicated by , choosing it randomly otherwise, as

shown above. The actual crossover of chromosomes is performed between the two sites

speci�ed by and (which default as shown above, to randomly

chosen sites) by calling the function .

November 27, 1993

:

)

)

geco

Generic Function

Primary Method

GECO 38

3.5.1 Basic Genetic Operators

r3-cross-organisms

&key

r3-cross-organisms

organism organism organism organism

&key (pick-random-chromosome-index)

#'eql

r3-cross-

chromosomes

parent-1 parent-2 child-1 child-2 :chromosome-index :allele-test

(parent-1) (parent-2) (child-1) (child-2)

(:chromosome-index parent-1)

(:allele-test)

parent-1 parent-2

child-1 child-2

:chromosome-index

:allele-test

2 0

[]

[]

This function performs a random respectful recombination crossover [Rad92a, Rad92b] be-

tween the two parent organisms and , storing the result in the two child

organisms and . The keyword arguments can be used to control which partic-

ular chromosomes to a�ect and where. The -supplied primary method performs the

crossover on the chromosome from both parents indicated by , choos-

ing it randomly otherwise, as shown above, and using the argument to specify

a function to tell when two alleles are the same, defaulting as shown above if unspeci-

�ed. The actual crossover of chromosomes is performed by calling the function

.

November 27, 1993

:

)

)

)

geco

3.6 Organism Mixin Classes

phenotype

organism

genotype

GECO 39

3.6 Organism Mixin Classes

Generic Function

Primary Method

Class

pmx-cross-organisms

&key

pmx-cross-organisms

organism organism organism organism

&key #'eql

(pick-random-chromosome-index)

(pick-locus-index (nth (genotype)))

(pick-locus-index (nth (genotype)))

sequence-chromosome

pmx-

cross-chromosomes

organism-phenotype-mixin

phenotype

copy-organism

parent-1 parent-2 child-1 child-2 :allele-test :chromosome-index :locus-index1

:locus-index2

(parent-1) (parent-2) (child-1) (child-2)

(:allele-test)

(:chromosome-index parent-1)

(:locus-index1 chromosome-index parent-1)

(:locus-index2 chromosome-index parent-1)

parent-1 parent-2 child-1

child-2

:chromosome-index

:allele-test

:chromosome-index

:locus-index1 :locus-index2

2 0

[]

[]

This function performs a partially mapped crossover (PMX) [Gol89] between the two par-

ent organisms and , storing the result in the two child organisms

and . The keyword arguments can be used to control which particular chromosomes

to a�ect and where. The -supplied primary method performs the crossover on the

chromosome from both parents indicated by , which should indicate

a , choosing it randomly otherwise as shown above, and using the

argument to specify a function to tell when two alleles are the same, defaulting

as shown above if unspeci�ed. Note that if is not speci�ed, all the

chromosomes should be sequence chromosomes, since PMX is only de�ned for sequence

chromosomes, and the chromosome will be chosen randomly. The actual crossover of chro-

mosomes is performed between the two sites speci�ed by and

(which default as shown above, to randomly chosen sites) by calling the function

.

Presently, there is only one mixin class intended to be used with organism classes.

[]

This class is intended to be mixed with organism classes which need to have a

represented for each . It is an abstract (non-instantiable) class.

Often it is necessary to decode the into a phenotype before the organism can be

evaluated and assigned a score. Also, some GAs bypass the encoded genotype and use

only the phenotype, requiring specially crafted genetic operators which manipulate the

phenotype directly.

Note that users of this class should review the discussion regarding copying the

slot included in the description of (page 32).

November 27, 1993

7

7

:

geco

)

)

)

)

)

)

phenotype

Geco

Geco

Geco

generics.lisp

organism

organism

thing genetic-plan

(organism) (plan)

organism

or-

ganism

GECO 40

Instance Allocated Slots

Specialized Methods

3.6 Organism Mixin Classes

Slot

Initarg

Accessor

i.e.

Generic Function

must implement the primary method

Generic Function

:Before Method

There are comments at the beginning of the �le which summarize the functions which

should or must be de�ned to implement a working GA using .

phenotype

:phenotype

phenotype

decode

genotype phenotype

decode organism-

phenotype-mixin evaluate

organism-phenotype-mixin

organism-

phenotype-mixin

evaluate

evaluate

organism-phenotype-mixin genetic-plan

score :before

organism-phenotype-mixin decode

evaluate

2 0

[]

[]

[]

An explicit representation of the organism, , its realization.

[]

This function converts 's to it's , and stores it in the

slot. automatically invokes , when appropriate, for instances of

subclasses (see , above).

The GA developer for all subclasses of the class

which performs the decoding operation required by the GA

application. does not provide a default primarymethod specialized on the

class.

[]

[]

This function evaluates and return it's . provides a method

on class , which invokes the generic function on

, so that the genotype will be decoded into a phenotype which can be used by the

primary method of (see page 34).

November 27, 1993

:

Geco

)

)

)

)

)

)

)

3.7 The Chromosome Class

genotype chromosomes

loci-vector

Class

Slot

Initarg

Accessor

Slot

Initarg

Accessor

GECO 41

Instance Allocated Slots

3.7 The Chromosome Class

chromosome

chromosome

organism

nil

:organism

organism

loci

:loci

loci

2 0

An organism's is made up of one or more , which contain the en-

coded genetic representation of what makes the organism di�erent from other organisms.

The actual encoding scheme used may vary between di�erent types of organisms, and even

between chromosomes of a single type of organism. implements much of the func-

tionality of chromosomes independently of the type of encoding used by the chromosome,

but also provides some explicit support for some of the most common kinds of chromosomes

via subclasses of the class (see Section 3.8).

[]

This class is the basic class upon which all chromosome classes are based. It is an abstract

(non-instantiable) class.

[]

[]

[]

This slot points back to the organism to which the chromosome belongs.

[]

[]

[]

This slot contains the , which is generally a simple, one-dimensional array, whose

elements jointly encode the genetic information of the chromosome. Note that the individ-

ual loci need not all be of the same type, though they usually are.

November 27, 1993

:

)

)

)

)

)

geco

geco

geco

loci vector

loci-vector

Initarg

Initarg

i.e.

Generic Function

Primary Method

:Around Method

GECO 42

Instance Creation and Initialization

Specialized Methods

3.7 The Chromosome Class

chromosome size :random

(chromosome) size

(chromosome) size :random

chromosome size

chromosome

:random chromosome

:random

make-chromosome

chromosome

:random

nil

make-loci-vector

:size

nil size

size

make-loci-vector

&key

make-loci-vector

chromosome &key &allow-other-keys

make-loci-vector

chromosome &key

loci

fixnum :around

nil

pick-random-alleles :around

&key &allow-other-keys

2 0

The generic function (see page 33) is the interface for creation of

instances.

The initialization for chromosome instances has been extended to support the following

additional initargs:

[]

A non- value for this initarg indicates that each locus should be initialized to a random

allele. The value of this keyword is passed to the function, and is

intended to support automatic generation of the initial population, and/or creation of

random organisms which could be added to a population to increase or restore its diversity.

[]

The value of this keyword determines the size of the chromosome, , the size of the

of the chromosome. If its value is , or it is unspeci�ed, the function

is invoked on the new instance. Specialization of the function for the instantiable

chromosome class is the normal way to control the size of chromosome instances.

[]

[]

[]

This function creates a for of size and puts it into the slot

of . The -supplied primary method creates an array whose element-type

is , with all the elements initialized to zero (0). The -supplied method

examines the value of the argument, and if it is non- passes to

. Since the method processes the argument, the

primary method uses the sequence to avoid processing it.

November 27, 1993

8

8

:

geco

)

)

)

)

)

)

geco

geco

generics.lisp

GECO 43

3.7 The Chromosome Class

loci vector

loci vectors

allele

codes

Generic Function

must be implemented

Generic Function

Primary Method

e.g.

Primary Method

Generic Function

Primary Method

There are comments at the beginning of the �le which summarize the functions which

should or must be de�ned to implement a working GA using .

locus-arity

copy-chromosome

copy-chromosome

chromosome

organism

make-chromosome

print-object

chromosome

print-object

print-unreadable-object

loci-printable-form

eidetic

eidetic

chromosome chromosome

nil

#'=

chromosome locus-index

locus-index chromosome

chromosome

locus-index

chromosome owner-organism

(chromosome) owner-organism

chromosome

owner-organism

chromosome

chromosome

(chromosome) stream

chromosome

chromosome

thing-1 thing-2

(chromosome-1) (chromosome-2)

2 0

[]

This function returns the number of allele values which are allowed at the locus indicated

by in . No primary method is prede�ned for the general class

, but one for any instantiable chromosome class. Note

that locus arity may be a function of , though this is relatively uncommon.

[]

[]

This function returns a copy of , setting the slot of the new chro-

mosome to . The -supplied primary method makes the copy using

, passing it the class of , and initializes the by

assigning each locus the same value as the corresponding locus of . Note that

this method of copying the alleles may not be appropriate for some chromosome classes,

, ones whose loci vectors are not atomic, and which may be manipulated (changed) in

ways which might a�ect more than one organism.

[]

This method specializes the standard Common Lisp function for chromo-

somes. It uses the standard Common Lisp function , includes

the type and identity of , and also uses to include a

representation of the alleles of .

[]

[]

This function is a predicate, returning true (non-) if the arguments are the same. In the

case of instances of chromosome classes, being the same means that they are of the same

class, have the same size, and the same alleles at corresponding loci in their .

The -supplied primary method compares the alleles (which are expected to be

, see Section 3.7.1, page 45) using .

November 27, 1993

:

)

)

)

)

geco

geco

loci vector

loci vector

GECO 44

3.7 The Chromosome Class

Generic Function

Primary Method

Generic Function

Primary Method

thing

(chromosome)

chromosome

chromosome

(chromosome)

chromosome

chromosome

size

size

chromosome

chromosome

pick-locus-index

pick-locus-index

chromosome

geco-random-integer

2 0

[]

[]

This function returns the size of its argument in whatever units are appropriate. The -

supplied primary method for returns the size of the belonging to

.

[]

[]

This function returns a random index into the of . The -

supplied primary method calls with the size of .

November 27, 1993

:

)

)

)

)

geco

geco

Geco

Geco

geco

3.7.1 Allele Coding: Codes vs. Values

GECO 45

3.7.1 Allele Coding: Codes vs. Values

allele codes

loci vector

loci-vector

allele codes allele values

Generic Function

Primary Method

i.e.

i.e.

Generic Function

Primary Method

chromosome-1 chromosome-2

(chromosome-1) (chromosome-2)

chromosome-1

chromosome-2

chromosome

(chromosome)

chromosome

hamming-distance

hamming-distance

chromosome chromosome

#'=

allele-values

allele-code-to-value

printable-allele-values loci-printable-form

locus-printable-form

pick-random-alleles

pick-random-alleles

chromosome

loci-vector

pick-random-allele

2 0

[]

[]

This function returns the count of the number of loci in the two arguments which have

di�erent alleles at corresponding loci. The -supplied primary method compares the

number of loci which are in , and uses to compare the (see

Section 3.7.1, below). It is an error if the entire part of designated is not

within its , , if an invalid locus index is implied by the arguments.

Fixnums are chosen as the default type for elements because they can frequently

be stored more e�ciently than general lisp values, particularly when there are only a small

number of alleles per locus. To make this choice more generally useful, interprets

the values stored in loci-vector elements as , as opposed to . This

allows a straightforward conversion between these �xnums and the actual alleles via sim-

ple table lookups, , the table contains the allele values and is indexed by the allele

code. supports this translation directly via the generic functions

and . also supports conversion of the allele codes to print-

able form via the generic functions , and

. These functions are describe below. Note that the descriptions

of some functions may gloss over the distinction between allele codes and allele values,

referring to either of them simply as alleles, but it should be clear from context which is

being manipulated.

[]

[]

This function initializes the loci of 's to random alleles. The

-supplied primary method calls for each locus to obtain its

new allele.

November 27, 1993

9

9

:

geco

)

)

)

)

)

geco

geco

Geco

generics.lisp

GECO 46

3.7.1 Allele Coding: Codes vs. Values

allele code

allele value

allele values allele codes

loci vectors

Generic Function

Primary Method

Generic Function

Primary Method

Generic Function

does not

e.g.

There are comments at the beginning of the �le which summarize the functions which

should or must be de�ned to implement a working GA using .

chromosome locus-index

(chromosome) locus-index

chromosome

chromosome locus-index allele-code

(chromosome) locus-index allele-code

allele-code chromosome

locus-index

chromosome locus-index

pick-random-allele

pick-random-allele

chromosome

geco-random-integer locus-arity

allele-code-to-value

allele-code-to-value

chromosome

aref

allele-values

allele-values

chromosome

allele-code-to-value

binary-chromosome

2 0

[]

[]

This function returns a random for the indicated locus of . The

-supplied primary method selects a random number in the proper range by calling

with the value returned by the function for the indi-

cated chromosome and locus-index.

[]

[]

This function converts to an (see page 45). The and

arguments permit di�erent loci of di�erent chromosomes to have di�erent map-

pings (codings) between allele codes and allele values. In particular, this permits di�erent

chromosomes/loci to have di�erent arity. The -supplied primary method uses

to index into the array returned by .

[]

This function returns a vector of , which may be used to convert the

used in . implement a primary method for this function for the

class. Instantiable chromosome classes should implement this method based

on the genetic representation they use.

Note that it is generally preferable to use the function , rather than

indexing into the vector returned by this function, since the implementation may permit

a more e�cient implementation than is supported by this general mechanism (, for

subclasses of).

November 27, 1993

:

10

10

geco

)

)

)

)

)

)

)

Geco

geco

geco

generics.lisp

allele code

allele code

allele code

GECO 47

3.7.1 Allele Coding: Codes vs. Values

Generic Function

does not

e.g.

Generic Function

Primary Method

etc.

Generic Function

Primary Method

Generic Function

Primary Method

There are comments at the beginning of the �le which summarize the functions which

should or must be de�ned to implement a working GA using .

chromosome locus-index

chromosome

(chromosome)

chromosome

chromosome

chromosome locus-index

(chromosome) locus-index

locus-index chromo-

some

locus-index chromosome

chromosome locus-index

(chromosome) locus-index

locus-index chromosome

printable-allele-values

chromosome

loci-printable-form

locus-printable-form

binary-chromosome

loci-printable-form

loci-printable-form

chromosome

loci-vector

locus-printable-form

locus-printable-form

locus-printable-form

chromosome

aref

printable-allele-values

printable-allele-values #\?

locus

locus

chromosome

loci

2 0

[]

This function returns a vector of characters indexed by to generate a printable

representation for a chromosome. implement a primary method for this

function for the class. Instantiable chromosome classes should implement this

method based on the genetic representation they use.

Note that it is generally preferable to call one of the functions or

, rather than indexing into the vector returned by this function,

since their implementation may permit a more e�cient implementation than is supported

by this general mechanism (, for subclasses of).

[]

[]

This function returns a string which is a printable representation of the of

. The -supplied primary method constructs a string whose length is the

size of , and whose characters represent the alleles of the chromosome on a

one-for-one basis, with the �rst character corresponding to the �rst locus' allele, The

characters representing each locus' allele are determined by calling .

[]

[]

This function returns the character which represents the allele at in

. The -supplied primary method uses to index into the vector returned by

with the found at in . If

the allele code is not a valid index for , return .

[]

[]

This function returns the at in the of .

November 27, 1993

:

)

)

)

)

)

)

geco

geco

loci vector

loci vector

allele code

3.7.2 Basic Chromosomal Genetic Operators

GECO 48

3.7.2 Basic Chromosomal Genetic Operators

Generic Function

Primary Method

Generic Function

Primary Method

i.e.

Generic Function

Primary Method

(setf locus)

(setf locus)

chromosome

setf

(setf (locus chromosome locus#) allele-code)

count-allele-codes

count-allele-codes

chromosome

#'=

mutate-chromosome

mutate-chromosome

chromosome

pick-random-allele

binary-chromosome

allele-code chromosome locus-index

allele-code (chromosome) locus-index

allele-code locus-index

chromosome

chromosome from-index loci-to-count allele-code

(chromosome) from-index loci-to-count allele-code

chromosome

allele-code chromosome

from-index loci-to-count

allele-code

chromosome

from-index loci-to-count

chromosome locus-index

(chromosome) locus-index

chromosome locus-index

2 0

[]

[]

This function stores the into the locus indicated by in the

of .

Note that Common Lisp has rather non-intuitive ordering for the arguments for

functions and methods. An example of proper invocation is:

[]

[]

This function returns the count of the number of loci in part of the which have

in them. The part of in which the count is conducted are speci�ed

as starting at the locus whose index is and which is long. The

-supplied primary method compares the alleles to using . It is an error

if the entire part of designated is not within the , , if an invalid

locus index is implied by the arguments and .

[]

[]

This function mutates at the locus . The -supplied primary

method uses to choose the new for the locus.

Note that for instances of subclasses of , this implementation will pro-

duce on average one mutation for every two invocations of this function, since half the time

the randomly chosen allele will be the same as the current allele at the indicated locus.

November 27, 1993

:

)

)

)

)

)

)

geco

geco

geco

GECO 49

3.7.2 Basic Chromosomal Genetic Operators

Generic Function

Primary Method

Generic Function

Primary Method

Generic Function

Primary Method

cross-chromosomes

cross-chromosomes

chromosome chromosome chromosome

chromosome

uniform-cross-chromosomes

&key

uniform-cross-chromosomes

chromosome chromosome chromosome

chromosome &key 0.5

2x-cross-chromosomes

2x-cross-chromosomes

chromosome chromosome chromosome

chromosome

parent-1 parent-2 child-1 child-2 locus-index

(parent-1) (parent-2) (child-1)

(child-2) locus-index

locus-index

child-1 locus-index parent-1 parent-2

child-2

parent-1 parent-2 child-1 child-2 :bias

(parent-1) (parent-2) (child-1)

(child-2) (:bias)

:bias

child-1

:bias parent-1 parent-2 child-2

parent-1 parent-2 child-1 child-2 locus-index1 locus-index2

(parent-1) (parent-2) (child-1)

(child-2) locus-index1 locus-index2

locus-1 locus-2

parent-1 child-2 parent-2 child-1

locus-1 locus-2

locus-2

2 0

[]

[]

This function performs a simple crossover operation between the two parent chromosomes,

storing the results in the two child chromosomes, using as a control parameter

for the crossover. The -supplied primary method performs a conventional one-point

crossover, assumes all the chromosomes are the same size and of compatible classes, the

receives alleles from , and the remaining alleles from ;

gets its alleles in an analogous manner.

[]

[]

This function performs a uniform crossover [Sys89, SD91, Dav91] operation between the

two parent chromosomes, storing the results in the two child chromosomes, using the

argument as a control parameter for the crossover. The -supplied primary method

performs a conventional uniform crossover, assumes all the chromosomes are the same size

and of compatible classes, statistically receives a fraction of the alleles speci�ed by

from , and the remaining alleles from ; gets its alleles in an

analogous manner.

[]

[]

This function performs a two-point crossover operation between the two parent chromo-

somes, storing the results in the two child chromosomes. The -supplied primary

method performs a conventional two-point crossover, assumes all the chromosomes are the

same size and of compatible classes. Alleles between and are copied from

from to , and the remaining alleles from ; gets its alleles in

an analogous manner. If is greater than , the copy operation wraps around

from the end of the chromosome back to its beginning, then copies from the beginning to

.

November 27, 1993

:

)

)

)

)

�

�

geco

Geco

allele codes

3.8 Subclasses of Chromosome

GECO 50

3.8 Subclasses of Chromosome

Generic Function

Primary Method

Generic Function

Primary Method

swap-alleles

&key

swap-alleles

chromosome &key (pick-locus-index)

(mod (1+) (size))

scramble-alleles

scramble-alleles

chromosome

chromosome :locus-index :locus-index2

(chromosome) (:locus-index chromosome)

(:locus-index2 locus-index chromosome)

chromosome

:locus-index :locus-index2

chromosome

(chromosome)

chromosome chromosome

2 0

[]

[]

This function swaps alleles between two loci of . The two loci to swap are

indicated by the arguments and . The -supplied primary

method allows the keyword arguments to default as shown above.

[]

[]

This function randomly rearranges the alleles of . The will have

the same set of both before and after the operation, but they will appear in

a di�erent permutation on the loci. Note that this operator should not be applied to

chromosomes for which the arity of all loci is not the same.

provides some support for some of the more common kinds of chromosomes. Presently,

this includes:

Binary chromosomes

Sequence chromosomes

This section also describes some support provided for decoding binary coded chromosomes.

November 27, 1993

:

)

f g

)

)

)

)

geco

geco

geco

3.8.1 Binary Chromosomes

allele values

allele value

allele code

Class

Generic Function

Primary Method

Generic Function

Primary Method

GECO 51

Instance Creation and Initialization

Specialized Methods

3.8.1 Binary Chromosomes

chromosome

chromosome locus-index

(chromosome) locus-index

locus-index chromosome

locus-index

chromosome locus-index allele-index

(chromosome) locus-index allele-index

allele-code

binary-chromosome

chromosome

binary-chromosome

chromosome

make-chromosome

chromosome

locus-arity

locus-arity

binary-chromosome

allele-code-to-value

allele-code-to-value

binary-chromosome

2 0

[]

Binary chromosomes are a subclass of whose alleles are always chosen from the

set 0 1 . This restriction allows them to be represented more e�ciently, and specialized

methods can be provided which process them somewhat more e�ciently than the more

general case.

Note that is still an abstract (non-instantiable) class, since the size of

the chromosome is left unspeci�ed.

This class has no additional slots beyond those de�ned for the class.

The generic function (see page 33) is the interface for creation of

instances.

[]

[]

This function returns the number of which are allowed at the locus indicated

by in . The -supplied primary method always returns 2,

regardless of the value of .

[]

[]

This function converts to an (see the discussion on allele coding in

Section 3.7.1). The -supplied primary method simply returns the , since

the value and the code are the same.

November 27, 1993

:

)

)

)

)

)

)

)

)

geco

geco

geco

geco

3.8.2 Binary Chromosome Decoding

GECO 52

3.8.2 Binary Chromosome Decoding

allele values allele codes

loci-vector

allele code

loci vector

loci vector

Generic Function

Primary Method

Generic Function

Primary Method

Generic Function

Primary Method

Generic Function

Primary Method

chromosome locus-index

(chromosome) locus-index

locus-index

chromosome locus-index

(chromosome) locus-index

chromosome

locus-index

chromosome size :random

(chromosome) size

chromosome size

chromosome

:random

chromosome from-index loci-to-decode

(chromosome) from-index loci-to-decode

chromosome

from-index loci-to-decode

allele-values

allele-values

binary-chromosome

binary-chromosome

#(0 1)

printable-allele-values

printable-allele-values

binary-chromosome

binary-

chromosome #(#\0 #\1)

make-loci-vector

&key

make-loci-vector

binary-chromosome &key &allow-other-keys

loci

bit :around

&key

&allow-other-keys

decode-binary-loci-value

decode-binary-loci-value

binary-chromosome

2 0

[]

[]

This function returns a vector of , which may be used to convert the

used in s. The -supplied primary method for always

returns the vector , regardless of the value of .

[]

[]

This function returns a vector of characters which may be indexed by to generate

a printable representation of . The -supplied primary method for

always returns the vector , regardless of the value of .

[]

[]

This function creates a for of size and puts it into the

slot of . The -supplied primary method creates an array whose element-

type is , and with all the elements initialized to zero (0). Since the inherited

method (page 42) processes the argument, the primary method uses the

sequence to avoid processing it.

[]

[]

This function returns the numeric value encoded by the loci of which start

at the locus indexed by and are in length. The -supplied

primary method treats the loci as an unsigned binary coded bit string, with the most

signi�cant bits having the lower indices in the .

November 27, 1993

:

CLOS

Geco

geco

)

)

)

)

)

)

)

)

3.8.3 Gray Code Translation

Class

Slot

Initarg

Accessor

Slot

Accessor

Slot

Accessor

GECO 53

Instance Allocated Slots

Instance Creation and Initialization

3.8.3 Gray Code Translation

C

<larryy@apple.com>

GA-List@AIC.NRL.Navy.Mil

gray-code-translation

number-of-bits

:number-of-bits

number-of-bits

gray-code-translation

b2g-map

b2g-map

g2b-map

g2b-map

:number-of-bits

ecosystem make-

instance

:number-of-bits gray-

code-translation

2 0

Sometimes it is advantageous to treat a binary coded value as if it were encoded using a

gray code scheme[CS88]. provides a special class whose instances can be used for

quickly decoding (or encoding) gray coded binary values.

The conversion scheme implemented by is based on an implementation in by

Larry Yaeger , which was published in the GA-List Digest v6n5

().

[]

A class whose instances support translation between standard binary and gray coded integer

values for a speci�ed number of bits.

[]

[]

[]

This slot speci�es the number of bits in the bit string which will be encoded or decoded.

This initarg should be speci�ed when an instance of is created

for proper initialization of the instance.

[]

[]

[]

[]

When the initarg is speci�ed at instance creation time, these two slots

will be initialized to bit maps which are used by the conversion methods described below.

No special functions for the creation of instances have been de�ned, since

and the standard protocol it follows provide all the necessary functionality.

Note that the initarg should be speci�ed when an instance of

is created for proper initialization of the instance.

November 27, 1993

:

11

11

)

)

)

)

chromosome-methods.lisp

GECO 54

Specialized Methods

3.8.3 Gray Code Translation

The code for this example is included in a comment in the �le.

Generic Function

Primary Method

Generic Function

Primary Method

translation-instance gray-coded-value

(translation-instance) value

translation-instance value

translation-instance gray-coded-value

(translation-instance) value

translation-instance value

2 0

[]

[]

This function uses to convert the gray coded to its binary coded

equivalent.

[]

[]

This function uses to convert the binary coded to its gray coded

equivalent.

The following example illustrates the use of these functions.

November 27, 1993

gray2bin

gray2bin

gray-code-translation

bin2gray

bin2gray

gray-code-translation

(let ((gct (make-instance 'gray-code-translation

:number-of-bits 5)))

(format t "~&Int ~7TBinary ~19TGray ~23TGrayInt RecoveredInt")

(dotimes (i (expt 2 (number-of-bits gct)))

(let ((g (bin2gray gct i)))

(format t "~%~3D ~8B ~8B ~4D ~8D"

i i g g (gray2bin gct g))))

(format t "~2%GrayInt Int")

(dotimes (i (expt 2 (number-of-bits gct)))

(format t "~% ~6D ~3D" i (gray2bin gct i))))

:

)

)

)

geco

geco

allele codes

loci vector

3.8.4 Sequence Chromosomes

Class

Generic Function

Primary Method

chromosome

chromosome

(chromosome)

chromosome

chromosome

chromosome

GECO 55

Instance Creation and Initialization

Specialized Methods

3.8.4 Sequence Chromosomes

sequence-chromosome

chromosome

sequence-chromosome

chromosome

make-chromosome

chromosome

pick-random-alleles

pick-random-alleles

sequence-chromosome

scramble-alleles

2 0

[]

Sequence chromosomes are a subclass of whose alleles are always chosen such

that every locus of a chromosome has an allele which does not occur at any other locus of the

chromosome. This requires that several operations which manipulate these chromosomes

be handled di�erently in order to maintain this property of uniqueness of alleles within the

chromosome.

Note that is still an abstract (non-instantiable) class, since the size

of the chromosome and the number of alleles (usually, but not necessarily the same) are

left unspeci�ed.

This class has no additional slots beyond those de�ned for the class.

The generic function (see page 33) is the interface for creation of

instances.

[]

[]

This function initializes the loci of to random alleles. The -supplied

primary method assigns to each locus in corresponding to the

locus' index into the , and the calls on .

November 27, 1993

:

>

)

)

)

)

geco

geco

regenerate

3.9 The Genetic Plan Class

GECO 56

3.9 The Genetic Plan Class

3.8.5 Sequence Genetic Operators

Generic Function

Primary Method

Generic Function

Primary Method

i.e.

pmx-cross-chromosomes

&key

pmx-cross-chromosomes

sequence-chromosome sequence-chromosome

sequence-chromosome sequence-chromosome &key

#'eql (pick-locus-index)

(pick-locus-index)

r3-cross-chromosomes

&key

r3-cross-chromosomes

sequence-chromosome sequence-chromosome

sequence-chromosome sequence-chromosome &key

#'eql

parent-1 parent-2 child-1 child-2 :allele-test :locus-index1 :locus-index2

(parent-1) (parent-2)

(child-1) (child-2)

(:allele-test) (:locus-index1 parent-1)

(:locus-index2 parent-1)

parent-1 parent-2 child-1

child-2 :locus-index1 locus-index2

parent-1 parent-2

:allele-test

:locus-index1 :locus-index2 :locus-index1 :locus-index2

parent-1 parent-2 child-1 child-2 :allele-test

(parent-1) (parent-2)

(child-1) (child-2)

(:allele-test)

parent-1 parent-2

child-1 child-2 :allele-test

2 0

[]

[]

This function performs a partially mapped crossover [Gol89] between the two parent chro-

mosomes and , storing the result in the two child chromosomes and

. The two arguments and specify the boundaries of the

segment of which is to be crossed with , defaulting as shown above. The

argument speci�es a predicate to determine equality of two alleles, defaulting

as shown above. The -supplied primary method treats the chromosome as circular

when . If = , or if one is 0 and the

other = the length of the parent chromosomes, then the children are simply copies of the

parents.

[]

[]

This function performs a random respectful recombination crossover [Rad92a, Rad92b])

between the two parent chromosomes and , storing the result in the two

child chromosomes and . The argument speci�es a predicate to

determine equality of two alleles, defaulting as shown above.

A genetic plan controls the overall strategy which determines how an ecosystem ,

, how new organisms are created from older organisms. This generally includes the over-

all scheme for selection of organisms for reproduction and application of genetic operators.

The actual selection methods provided by are described in Section 3.10, since they

are typically not specialized on the class of the genetic plan.

November 27, 1993

:

geco

geco

ecosystem

)

)

)

)

)

)

)

)

)

)

Class

Slot

Initarg

Accessor

Slot

Initarg

Accessor

Slot

Initarg

Accessor

GECO 57

Instance Allocated Slots

Instance Creation and Initialization

3.9 The Genetic Plan Class

genetic-plan

ecosystem

:ecosystem

ecosystem

generation-limit

nil

:generation-limit

generation-limit

evaluation-limit

nil

:evaluation-limit

evaluation-limit

nil

evolution-

termination-p

make-genetic-plan

genetic-plan

2 0

[]

[]

[]

[]

This slot records the which is using the genetic plan.

[]

[]

[]

[]

[]

[]

These slots (which default to) can be used to establish termination criteria for the

evolutionary process. They are used by the -supplied primary method for

(see below).

The generic function (see page 19) is the interface for creation

of instances.

November 27, 1993

:

12

12

)

)

)

geco

geco

geco

generics.lisp

Generic Function

Primary Method

Primary Method

GECO 58

Specialized Methods

3.9 The Genetic Plan Class

plan thing

(plan) (ecosystem)

(plan) (old-population)

thing

plan

ecosystem

ecosystem

There are comments at the beginning of the �le which summarize the functions which

should or must be de�ned to implement a working GA using .

regenerate

regenerate

genetic-plan ecosystem

regenerate

genetic-plan generational-population

regenerate

ecosystem regenerate

population

generational-population

regenerate

regenerate generational-

population

regenerate

population generational-population

regenerate

2 0

[]

[]

[]

This function creates a new version of which is more evolved according to the ge-

netic plan . The -supplied version of which is specialized to the

class invokes on 's population, and saves the result in

's slot.

Note that is currently the only population class for which

is de�ned.

The -supplied version of which is specialized to the class

is not intended to be used for real GAs, but to serve as a template to illustrate

the responsibilities of . Therefore a specialized method should be implemented

for all subclasses of , including . For generational

GAs, the responsibilities of include:

November 27, 1993

:

score

�

�

�

)

)

geco

geco

Geco

3.10 Selection Methods

GECO 59

{

{

{

3.10 Selection Methods

based

on

Generic Function

Generic Function

old-population

old-population

old-population

old-

population

old-population

old-population

old-population

old-population

plan

(plan)

plan

organisms

ecosystem

evolution-termination-p

evolution-termination-p

genetic-plan

evolve

nil

evaluation-limit generation-limit

converged-p

2 0

Create a new population of the same class as , and whose size is

the size of . Note that the new population need not necessarily be

the same size as unless that is consistent with the genetic plan. Note

also that this size is the size of the vector, but this vector does not contain

any organisms.

Assure that the slot of the new population is the same as that of

.

Install organisms in the new population, based on the organisms of .

This typically involves:

Selecting some of the organisms from to participate in creation

of the new population. This selection process is typically based on their s

(�tness or penalty), and may be performed using one or more selection methods

(see Section 3.10), or similar methods.

Copying some of the selected organisms from , and

Creating new organisms to include in the new population, typically by either

mutating selected organisms from or combining some of them

using other genetic operators such as crossover.

[]

[]

This function is a predicate used by the -supplied method to determine when

to terminate the evolutionary process. The -supplied primary method returns true

(non-) when either an evaluation limit or a generation limit has been established (by

putting a number in the or the slot of) and

either of those limits has been exceeded, or when (page 25) returns true.

provides a sampling of selection methods. None of them are guaranteed to be the

best in the world, but some of them may prove useful as examples, or as a base upon which

to build your own.

November 27, 1993

:

:

score

)

)

)

)

)

)

)

geco

geco

geco

GECO 60

3.10 Selection Methods

Generic Function

Primary Method

Generic Function

Primary Method

Function

Primary Method

Generic Function

population

(population)

population

popula-

tion

population

(population)

population

population

weights-table :invert-p

weights-table

weights-table

:invert-p

weights-table

weights-table

population

(population)

population

pick-random-organism-index

pick-random-organism-index

population

geco-random-integer (size

)

pick-random-organism

pick-random-organism

population

pick-

random-organism-index

roulette-pick-random-weight-index

&key

nil

roulette-pick-random-organism-index

roulette-pick-random-organism-index

population

2 0

[]

[]

This function returns the index of a random organism from . The -supplied

primary method simply calls with the argument

.

[]

[]

This function returns a random organism from . The -supplied primary

method returns the organism from indexed by the value returned from

.

[]

This function selects a random index into an array of weights , using the

roulette wheel approach [Gol89]. An entry in indicates the probability that

the corresponding index should be returned. The argument when non- causes

the selection to be inversely proportional to entries. The -supplied

primary method assumes that has been normalized to sum to 1 0.

[]

[]

This function selects a random organism from , weighted by , using the

roulette wheel approach [Gol89], as used in DeJong's R1 [DeJ75]; it is also referred to by

Brindle as stochastic sampling with replacement [Bri81].

November 27, 1993

:

)

)

)

)

score

score

GECO 61

3.10 Selection Methods

Primary Method

Generic Function

Primary Method

Generic Function

population

(population)

population

population :multiplier

(population) (:multiplier)

population

population

:multiplier

population

population :multiplier

roulette-pick-random-organism

roulette-pick-random-organism

population

stochastic-remainder-preselect

&key

stochastic-remainder-preselect

population &key 1

nil

(let ((selector (stochastic-remainder-preselect some-population)))

(do ((organism (funcall selector) (funcall selector)))

((null organism))

(do-something-with organism)))

2 0

[]

[]

This function selects a random organism from , weighted by , using the

roulette wheel approach [Gol89], as used in DeJong's R1 [DeJ75]; also referred to by Brindle

as stochastic sampling with replacement [Bri81].

[]

[]

This function prepares and returns a function (actually a closure) of no arguments which

will select and return random organisms from , weighted by , using a tech-

nique referred to by Brindle as stochastic remainder selection without replacement [Bri81].

Each call to the returned function will return an organism member of until the

appropriate number of organisms have been selected, then the function will return .

The keyword argument can be supplied to indicate the number of organisms

to be selected, in terms of the size of . For instance, if it is desired that the

returned function return twice as many organisms as are in , a value

of 2 should be used.

The following code fragment illustrates the intended use:

November 27, 1993

geco

:

: :

:

score

)

)

� �

)

)

)

)

GECO 62

3.10 Selection Methods

Primary Method

Generic Function

Generic Function

Primary Method

i.e.

Generic Function

Primary Method

ranking-preselect

&key

ranking-preselect

population &key 1 2.0

nil

pick-some-random-organism-indices

pick-some-random-organism-indices

population

tournament-select-organism

tournament-select-organism

population

pick-some-random-organism-

indices better-than-test

population :multiplier :max

(population) (:multiplier) (:max)

population

population

population

:multiplier

population

population :multiplier

:max

:max :max

:max

population

population number-to-pick

(population) number-to-pick

number-to-pick population

population tournament-size

(population) tournament-size

tournament-size population

2 0

[]

[]

This function prepares and returns a function (actually a closure) of no arguments which

will select and return random organisms from , weighted by the rank of each

organism's wthin , without replacement. [Bak85] Each call to the func-

tion returned from this method will return an organism member of until the

appropriate number of organisms have been selected, then the function will return .

The keyword argument can be supplied to indicate the number of organisms

to be selected, in terms of the size of . For instance, if it is desired that the

returned function return twice as many organisms as are in , a value

of 2 should be used.

The main idea of rank selection (as implemented here) is as follows: Sort the population by

score from best to worst, assigning a linearly decreasing number of copies to each organism,

starting with copies of the most �t organism. The number of copies of the least �t

organism is determined according to the following formula:

2 0(1 0)

where fractional remainders are used as probabilities, and negative values are equivalent to

zero. Note that values for greater than 2 0 will result in some fraction of the less �t

organisms in not being selected at all.

[]

[]

This function returns random organism indices for . The indices

will each be unique, , there will be no duplicates for any given call to this function.

[]

[]

This function picks organisms from at random, and returns

the best (most �t) one. The -supplied method calls

to establish the members of the tournament, and uses to

compare the organisms.

November 27, 1993

:

)

)

)

)

geco

scores

etc.

Class

Slot

Initarg

Accessor

3.11 The Population Statistics Class

GECO 63

Instance Allocated Slots

3.11 The Population Statistics Class

population-statistics

population

:population

population

:population population-statistics

2 0

This class supports accumulation of information about (at least) the of the mem-

bers of a population. This information can be used for normalizing the scores across the

population,

Instances are created automatically by at the end of evaluating a new population,

after all the organisms have been created and evaluated.

[]

[]

[]

[]

This slot indicates the population to which this population-statistics instance applies. The

initarg should be speci�ed when a instance is cre-

ated.

November 27, 1993

:

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

�

�

�

�

�

�

GECO 64

3.11 The Population Statistics Class

Slot

Initarg

Accessor

Slot

Initarg

Accessor

Slot

Initarg

Accessor

Slot

Initarg

Accessor

Slot

Initarg

Accessor

Slot

Initarg

Accessor

sum-score

:sum-score

sum-score

avg-score

:avg-score

avg-score

max-score

:max-score

max-score

min-score

:min-score

min-score

max-organism

:max-organism

max-organism

min-organism

:min-organism

min-organism

score population

score population

score population

score population

population max-score

population min-score

compute-statistics

population-statistics

2 0

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

[]

These slots hold the calculated values, respectively, for:

the sum of the s of all the organisms in the

the average (statistical mean) of the s of all the organisms in the

the maximum of the s of all the organisms in the

the minimum of the s of all the organisms in the

an organism in which had a score of

an organism in which had a score of

The above values are calculated by , which is invoked automatically

at the end of initialization of an instance of a class.

November 27, 1993

:

geco

geco

)

)

)

)

)

)

�

�

)

�

�

(self) stream

self

self

self

Slot

Initarg

Accessor

Slot

Initarg

Accessor

Primary Method

GECO 65

Instance Creation and Initialization

3.11 The Population Statistics Class

sum-normalized-score

:sum-normalized-score

sum-normalized-score

avg-normalized-score

:avg-normalized-score

avg-normalized-score

score population

score

population

compute-normalized-statistics

make-population-statistics

population-statistics

compute-

statistics

print-object

population-statistics

print-object

population-statistics

print-unreadable-object

avg-score

avg-score avg-normalized-score

2 0

[]

[]

[]

[]

[]

[]

These slots hold the calculated values, respectively, for:

the sum of the normalized s of all the organisms in the

the average (statistical mean) of the normalized s of all the organisms in the

The above values are calculated by , which invokes

automatically as part of evaluatiing a population (see �gure 2.2, page 14).

The generic function (see page 23) is the interface

for creation of instances.

The instance initialization for this class has been extended to automatically call

(see below) on the new instance.

[]

This method specializes the standard Common Lisp generic function for

instances of the class. It uses the standard Common Lisp function

, includes the type and identity of , and also includes one of

the following:

If the population is converged, the of , which is the value to which all

the organisms have converged, else

Both the and of .

November 27, 1993

:

)

)

)

)

geco

geco

geco

geco

GECO 66

3.11 The Population Statistics Class

Generic Function

Primary Method

Generic Function

Primary Method

population-statistics

(population-statistics)

population-statistics

population-statistics

(population-statistics)

population-statistics

compute-statistics

compute-statistics

population-statistics

population

population-statistics

population

population population

compute-normalized-statistics

compute-normalized-statistics

population-statistics

population

normalize-

score population population-statistics

genetic-plan

population

population

2 0

[]

[]

This function calculates and stores whatever statistics of the population are necessary for

the genetic plan to calculate normalized scores of the organisms of the population indicated

by the slot. The function is called by a -supplied initialization method

on the class. The -supplied primary method calculates the

sum of all the scores of the organisms in the , and the minimum, maximum,

and average scores for the , and retains (pointers to) organisms in

which have the minimum and maximum scores. These values are stored in the appropriate

slots of .

[]

[]

This function calculates and stores whatever statistics of the normalized scores of the

are necessary for the genetic plan to control the evolution of the ecosystem at

the current time. The function is automatically called by a -supplied

method which is specialized to the , , and

classes. The -supplied primary method calculates the sum of all the

normalized scores of the organisms in the , and the average normalized score for

the . These values are stored in the appropriate slots of .

November 27, 1993

geco

geco

sb-test.lisp

count ones onemax

Chapter 4

A Simple Binary Example

An example of how to customize is provided in the �le , which presents

two alternative GAs to solve a simple problem often called the or

[Ack87], which tries to maximize the number of one-bits in a binary chromosome. The

following material provides a overview of the de�nitions in this �le which implement the

�rst example GA, discussing each one, why it is necessary and/or what it does, and how it

�ts into the framework.

67

:

Geco

e.g.

geco

geco

geco

Geco

4.1 Using with Packages

GECO 68

4.1 Using with Packages

GECO.system geco

geco-user GECO.

system

(defpackage GECO-USER

(:use "COMMON-LISP"

#+:ccl-2 "CCL"

"GECO")

(:nicknames "GU"))

(in-package :GECO-USER)

2 0

The �le de�nes the package, which contains all the de�nitions.

Normally, a GA application will be de�ned in its own package or packages. All the examples

provided with are de�ned in the package, which is also de�ned in

, as follows:

Then, near the beginning of each �le containing code in this package, a line should appear

which tells lisp that the following code is in the appropriate package, so that it has access

to all the de�nitions. ,

November 27, 1993

:

i.e.

Geco

geco

geco

geco

geco

geco

4.2 De�ning the Genetic Structures

GECO 69

4.2 De�ning the Genetic Structures

loci vector

A 10-bit binary chromosome.

So will know how large to make the chromosome.

An organism with only a 10-bit binary chromosome.

So will know what chromosomes to make.

binary-

chromosome

binary-chromosome

binary-chromosome-10 size

(defclass BINARY-CHROMOSOME-10 (binary-chromosome)

()

(:documentation

" "))

(defmethod SIZE ((self binary-chromosome-10))

" "

10)

simple-binary-10-organism organism

genotype

chromosome-classes

binary-chromosome-10

(defclass SIMPLE-BINARY-10-ORGANISM (organism)

()

(:documentation

" "))

(defmethod CHROMOSOME-CLASSES ((self simple-binary-10-organism))

" "

'(binary-chromosome-10))

2 0

First, let's de�ne the class of chromosome we'll need. The most common chromosomes

used by GAs are typically bit vectors, , each locus on the chromosome has a binary

value. has a prede�ned subclass of chromosome for just this purpose,

, which though it doesn't have any additional slots, does have some specialized

methods which support displaying binary chromosomes, and decoding values encoded in

them. But is still too general for instantiation, so we de�ne the class

to add a method which returns 10, the number of bits in the

chromosome. Now when instantiates a chromosome of this class, it can determine

the size of the chromosome's by simply using the standard protocol to inquire

from the chromosome instance it's size. This allows to allocate the loci vector

automatically as part of chromosome instantiation.

Next, we de�ne as a subclass of . This class will

hold a single chromosome of the class we just de�ned in its slot. Using the same

technique as in the previous paragraph, we de�ne a method for this

class to tell the number and classes of chromosomes which will be held by instances

of this subclass of organism. Speci�cally, this method returns a list of length one (since

we only need one chromosome), and the sole list element is the name of our application

speci�c chromosome class, .

November 27, 1993

:

geco

geco

geco

geco

geco

GECO 70

4.2 De�ning the Genetic Structures

The number of non-zero alleles, by locus, for our population.

Our population-statistics also contains allele counts.

Compute the allele statistics for the population and save them.

population-statistics

allele-counts

binary-population-statistics

:after

(defclass BINARY-POPULATION-STATISTICS (population-statistics)

((ALLELE-COUNTS

:accessor allele-counts

:initform nil

:type (or null (vector fixnum 10))

:documentation

" "))

(:documentation

" "))

:after compute-

statistics binary-population-statistics

allele-counts

compute-binary-allele-statistics

(defmethod COMPUTE-STATISTICS :AFTER

((pop-stats binary-population-statistics))

" "

(setf (allele-counts pop-stats)

(compute-binary-allele-statistics (population pop-stats))))

2 0

The next class de�nition is a specialization of the class .

Instances of this class are used by to record statistical information about the current

population to simplify certain operations like normalizing scores and determining whether

the population has converged. By specializing this class, we'll be able to piggy-back some of

the calculations we want performed on the functions which will already be invoking.

To record the additional information we want, we add a slot and name the

new specialized class . (This allele-count data isn't really

useful for solving this particular problem. Adding it to the population's statistics was done

here only to illustrate the use of an method to extend 's builtin functionality.)

The piggy-backed computation is performed by adding an method to the

generic function, specialized on our class.

This method sets the slot to the result returned by invoking another

builtin function, , which returns a list of vectors (one

per chromosome in the organisms of the population). Each vector contains counts of non-

zero alleles, one count per locus. Since our organism only has one chromosome, we'll get a

single vector of counts.

November 27, 1993

:

geco

geco

geco

geco

geco

geco

geco

GECO 71

4.2 De�ning the Genetic Structures

Our populations are generational, and the scores are maximized.

So knows how to make the organisms in our population.

So knows how to make our population statistics instances.

loci vector

generational-population

population

simple-binary-population

organism-class

population-statistics-class

(defclass SIMPLE-BINARY-POPULATION

(generational-population maximizing-score-mixin)

()

(:documentation

" "))

(defmethod ORGANISM-CLASS ((self simple-binary-population))

" "

'simple-binary-10-organism)

(defmethod POPULATION-STATISTICS-CLASS

((self simple-binary-population))

" "

'binary-population-statistics)

simple-

binary-population

2 0

The next class de�nition is a specialization of the class , which

is itself a specialization of the class . The principle noteworthy feature of this

subclass, , is that it provides two additional methods. These

methods provide information to so that it can perform it's duties automatically.

Speci�cally, the method tells what class the organism instances

are to be, and the method tells what class the

population statistics instances are to be.

At this point please notice that telling to create an instance of the class

is su�cient, and that can then create a complete population

of organisms of the proper class, and that each organism will contain chromosomes of the

proper class, and each chromosome will have a of the proper size and type,

initialized to random alleles. Thus, the structures (at this level) which will be manipulated

by our GA are completely speci�ed. Next, we need to specify the plan which controls the

GA.

November 27, 1993

:

i.e.

geco

4.3 De�ning a Genetic Plan

GECO 72

4.3 De�ning a Genetic Plan

so we can push instances

A stack of population-statistics for all past populations.

Abstract class to allow method sharing for initialization & regeneration.

The score for our organisms is the number of non-zero alleles.

genetic-plan

genetic-plan

statistics

sb-test.lisp simple-plan

(defclass SIMPLE-PLAN (genetic-plan)

((STATISTICS

:accessor statistics

:initarg :statistics

:initform nil ;

:documentation

" "))

(:documentation

" "))

evaluate simple-plan simple-binary-

10-organism

count-allele-codes chromosome-

methods.lisp

1

(defmethod EVALUATE ((self simple-binary-10-organism)

(plan simple-plan)

&AUX (chromosome (first (genotype self))))

" "

#+:mcl (declare (ignore plan))

(setf (score self)

(count-allele-codes chromosome 0 (size chromosome) 1)))

2 0

The next class de�nition is a specialization of . As mentioned earlier, the

genetic plan provides a strategy which determines how an ecosystem regenerates, , how

new organisms are created from older organisms. This is the heart of the genetic algorithm.

Subclasses of the class are primarily used to specialize methods which per-

form the actual processing of the GA, but we de�ne one additional slot, , which

will allow us to record statistics about each generation in a list as the population evolves

under the plan. Alternatively, we could have used a �le, or a vector which was large enough

to hold the maximum number of generations, but simplicity will be the guiding principle

for our example. Also, since we will have two di�erent genetic plans, for the two examples

illustrated in the �le , we de�ne an intermediate abstract class

to allow us to share some of the functionality between the two genetic plans.

First is an method specialized on both the and

classes. This is the method which calculates the raw (unnormalized) score of

each organism which our plan evolves. In our speci�c problem, score is proportional to the

number of set bits in the chromosome, and there just happens to be a utility which

we can use: . Inspecting the code for this method in

reveals that it can be used to return the number of loci in the chromosome

which have allele codes of .

November 27, 1993

:

�

�

�

Geco

geco

decode

genotype phenotype

GECO 73

{

{

{

{

4.3 De�ning a Genetic Plan

evaluate

genotype organism

phenotype organism-phenotype-mixin

decode :before evaluate

organism-phenotype-mixin genetic-plan

decode

organism

organism-phenotype-mixin

evaluate

ecosystem population

2 0

A few additional points worth noting about :

This is the only place in our example GA which needs to interpret the genetic content

of our application-speci�c organism.

Often it is necessary to the genetic content of an organism, converting the

into an instance of the represented by the genotype. pro-

vides for this by including the following:

A slot is de�ned in the class.

A slot is de�ned in the class.

A generic function is called in a method of specialized

on the and classes.

Since cannot prede�ne a method for , any GAs using phenotypes

must be sure to implement one for the application speci�c subclass of

and .

Generally there is little reason for the plan to be an argument to this particular

method, but it is part of the protocol for the generic function, which is also

used at the and levels of our class hierarchy, and at these

higher levels it may well be appropriate for the genetic plan to discriminate between

alternate methods.

November 27, 1993

:

geco

GECO 74

4.3 De�ning a Genetic Plan

Create a new generation from the previous one, and record statistics.

selectively reproduce, crossover, and mutate

record old-pop's statistics

impractical for real-world problems

regenerate

simple-plan simple-binary-population

genetic-plan-methods.lisp generational-population

regenerate

operate-on-population

operate-on-

population simple-plan regenerate

statistics

(defmethod REGENERATE ((plan simple-plan)

(old-pop simple-binary-population)

&AUX

(new-pop (make-population (ecosystem old-pop)

(class-of old-pop)

:size (size old-pop))))

" "

(setf (ecosystem new-pop) (ecosystem old-pop))

;;

(operate-on-population plan old-pop new-pop)

;;

(push (statistics old-pop) ;

(statistics plan))

new-pop)

2 0

The next method de�ned in our example is , which is specialized on both the

and the classes. The purpose of this method

is to create a new (or revised) population based on the current population, using what-

ever strategy is speci�c to the genetic plan. There is a default method provided by

in for subclasses of , but it is

provided as a template, not a realistic example, since it simply copies random organ-

isms from generation to generation (plus some simple bookkeeping). Our specialized ver-

sion of replaces the random copying with a call to a new generic function

which takes the current and new (but empty) populations as in-

put, and updates the new population. The example will de�ne two versions of

, discriminated by subclasses of our . The method

also records the current population's statistics in the list in the plan's slot.

As mentioned earlier, it could have written some of the statistical information to a �le for

later analysis, or possibly used them to support the genetic plan.

November 27, 1993

:GECO 75

4.3 De�ning a Genetic Plan

This is the probability of mutating an organism, not a single locus as is often used.

The probability of crossover for an organism.

operate-on-population

simple-plan simple-plan-1 simple-plan-2

simple-plan-1

(defclass SIMPLE-PLAN-1 (simple-plan)

())

(defmethod PROB-MUTATE ((self SIMPLE-PLAN-1))

" "

0.03)

(defmethod PROB-CROSS ((self SIMPLE-PLAN-1))

" "

0.7)

operate-on-population simple-plan-1

stochastic-

remainder-preselect

operate-on-population simple-plan-2

2 0

Now we are almost ready to de�ne our alternate versions of which

contain the distinguishing features of our two example GAs. To keep them separate, we

de�ne two subclasses of our : and (we'll only

examine here). We also give these classes separate specialized methods to

supply the probabilities with which we should apply the mutate and crossover operators,

since these values may need to be di�erent for the two plans.

The method for uses a technique referred to by

Brindle [Bri81, Gol89] as \stochastic remainder selection without replacement" (

, page 61) to select one organism at a time from the old (current)

population, then based on a random draw applies either a uniform crossover operator

[Sys89, SD91, Dav91] with another member of the old population (selected randomly), a

simple bit mutation operator, or simple reproduction, to supply members of the new popu-

lation. The principle di�erence found in the for

is that the second organism used in crossover is also selected based on �tness, in stead of

randomly.

November 27, 1993

:

<

2 0

November 27, 1993

GECO 76

4.3 De�ning a Genetic Plan

Apply the genetic operators on selected organisms from the old population.

a throw-away, not in any population so it can be GC'd

hamming distances 2 will produce eidetic o�spring anyway,

so bypass crossover & evaluation

copying the score bypasses the need for a redundant evaluate

(defmethod OPERATE-ON-POPULATION

((plan simple-plan-1) old-population new-population &AUX

(new-organisms (organisms new-population))

(p-cross (prob-cross plan))

(p-mutate (+ p-cross (prob-mutate plan)))

(orphan (make-instance (organism-class old-population))))

" "

(let ((selector (stochastic-remainder-preselect old-population)))

(do ((org1 (funcall selector) (funcall selector))

org2

(random# (geco-random 1.0) (geco-random 1.0))

(i 0 (1+ i)))

((null org1))

(cond

((> p-cross random#)

(if (< 1 (hamming-distance

(first (genotype org1))

(first (genotype (setf org2 (pick-random-organism

old-population))))))

(uniform-cross-organisms

org1 org2

(setf (aref new-organisms i)

(copy-organism

org1 :new-population new-population))

orphan) ;;

;;

;;

(setf (aref new-organisms i)

(copy-organism-with-score

org1 :new-population new-population))))

((> p-mutate random#)

(mutate-organism

(setf (aref new-organisms i)

(copy-organism

org1 :new-population new-population))))

(T ;;

(setf (aref new-organisms i)

(copy-organism-with-score

org1 :new-population new-population)))))))

:

sb-test.lisp

GECO 77

4.3 De�ning a Genetic Plan

2 0

The remaining code in simply provides a test harness to repeatedly invoke

the GAs, and accumulate performance information over a speci�ed number of runs.

November 27, 1993

�

�

�

�

�

Chapter 5

The GECO Files

geco

geco

geco

geco

geco

geco

geco geco

README

COPYING.LIB-2.0

geco.ps

GECO.system

defpackage defsystem

defsystem

defsystem.lisp

GECO.system

This section provides a brief overview of the �les. The �les are discussed in groups,

based on related type or content.

The �rst group of �les provide documentation.

An overview of the distribution, including abstract, copyright and authorship

information, installation instructions, version history.

A copy of the GNU Library General Public License, version 2.0, which describes the

terms under which is distributed. This document is a product of the Free

Software Foundation, Inc., of Cambridge, Mass.

A copy of the documentation (this document), in PostScript form.

The next group of �les are related to the system de�nition.

The system de�nition �le. It contains the and forms for

creating , and code to select conditional compilation features. This is the only

�le which is normally loaded manually. To compile and load the rest of ,

use the example commands contained in comments following the forms.

A portable defsystem facility, developed byMark Kantrowitz, School of Computer Sci-

ence, Carnegie Mellon University. This is the defsystem used by . This

78

:

1

1

�

�

�

�

�

protocol i.e.

defsystem

code/tools

GECO 79

CHAPTER 5. THE GECO FILES

geco

geco

geco

geco

geco

geco

geco

This location is actually di�erent from the one from which I originally obtained this software, but

this is the latest address (of which I am aware at the time of this writing) of Mark Kantrowitz's archive.

This archive seems to be reorganized frequently, but last time I checked, the �les were in the

subdirectory.

/afs/cs.

cmu.edu/project/ai-repository/ai/lang/lisp ftp.

cs.cmu.edu

defsystem.text

defsystem.lisp

/afs/cs.cmu.edu/project/ai-repository/ai/lang/lisp

ftp.cs.cmu.edu

generics.lisp

defgeneric

defgeneric

:documentation

classes.lisp

defclass

dbg.lisp

random.lisp

geco-random-integer geco-random-float

GECO.system

2 0

�le is a slightly modi�ed version based on one obtained from the directory

via anonymous FTP from

. The modi�cations allow it to work under MCL 2.0, and under Franz's

Allegro Common Lisp versions prior to the patched 4.1 which supports logical path-

names.

Provides the documentation for . This version was obtained from

the directory via anony-

mous FTP from .

The next group of �les contain de�nitions which must be loaded/compiled before the rest

of the source code.

This �le contains forms de�ning some (but not all) of the generic function

established by , , the set of generic functions and their arguments

which must be honored by all -based applications. Each of the

forms contains a string for the function describing its intended

purpose (these documentation strings are easily retrieved in most interactive lisp

programming environments). Comments in the �le also indicate which of the generic

functions should/must have methods de�ned for your application-speci�c classes when

you implement a GA with .

This �le contains the forms de�ning each of the classes.

This �le contains the de�nitions for a general debugging facility used in the develop-

ment of .

This �le contains the de�nition of the random number generators used by ,

and . In addition, it includes the de�ni-

tion of an alternate set of random number generators, provided with permission from

John Koza from his implementation Simple Genetic Programming in Lisp. Condi-

tional compilation options (setup in) control which random number

generator is used.

November 27, 1993

2

2

:

�

�

�

�

class-name

geco

geco

geco

geco

defsystem

code/ext/resource

GECO 80

{

{

{

{

{

CHAPTER 5. THE GECO FILES

As with the �les, this is a di�erent location that from which I originally obtained

this software. My most recent information regarding its location within this archive pointed to the

subdirectory.

bwm-resources.lisp

resources.lisp ftp.cs.cmu.edu

/afs/cs.cmu.edu/project/ai-repository/ai/lang/lisp

resource-mgt.lisp

bwm-resources.lisp

-methods.lisp

selection-methods.lisp

population

ecosystem-methods.lisp

population genetic-plan

genetic-plan-methods.lisp

ecosystem population

2 0

The next group of �les will eventually be used to support a more sophisticated memory

management scheme than is presently being used by . The corresponding defsystem

entries are commented out, but these �les are provided in case an ambitious user

should want to pursue this enhancement (please let me know if you do!).

A portable resources facility, developed by Bradford W. Miller, Department of Com-

puter Science, University of Rochester. This �le contains its own documentation. This

version was obtained via anonymous FTP as from

in the directory .

This �le contains some speci�c resource management tools built on top of

. These tools are presently relatively untested.

The remaining �les contain the method de�nitions for the guts of . An attempt has

been made to organize them by the principle class to which the methods apply, however,

due to the use of multiple-dispatch methods, this has not always been possible.

In general, the �les have been named using a standard pattern: .

Presently, the single exception is the �le which I decided to

separate from the other methods.

This �le contains methods which perform the following general categories of opera-

tions:

initialize ecosystems

make instances of and appropriate for an ecosystem

evolve and evaluate ecosystems

This �le contains methods which perform the following general categories of opera-

tions:

regenerate instances of and

determine whether evolution should be terminated

November 27, 1993

:

�

�

�

�

GECO 81

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

CHAPTER 5. THE GECO FILES

population-methods.lisp

population

organism population-statistics

pop-stats-methods.lisp

population-statistics

selection-methods.lisp

organism-methods.lisp

organism

2 0

This �le contains methods which perform the following general categories of opera-

tions:

initialize and print instances of

create and instances for a population

evaluate populations, and compute statistics over them

compute normalized scores over populations

determine if a population has converged

This �le contains methods which perform the following general categories of opera-

tions:

initialize, and print instances of

compute and normalize population statistics

A fairly broad sampling of techniques for selecting organisms from populations. Tech-

niques include:

random selection

weighted roulette-wheel selection

stochastic remainder selection

tournament selection

A version of the roulette-wheel selection routine has also been generalized to select

an index from a table of weights. I expect this routine to be useful for performing

weighted genetic operator selection.

This �le contains methods which perform the following general categories of opera-

tions:

initialize, copy, and print instances of

create chromosomes for an organism

evaluate and decode organisms

compute normalized scores of organisms

determine if two organisms are the same

choose random chromosomes, and locations on chromosomes

November 27, 1993

:

�

�

�

geco

loci vectors

allele codes allele values

GECO 82

{

{

{

{

{

{

{

{

{

{

{

CHAPTER 5. THE GECO FILES

chromosome-methods.lisp

chromosome

sb-test.lisp

ss-test.lisp

2 0

perform mutation and crossover on organisms

This �le contains methods which perform the following general categories of opera-

tions:

initialize, copy, and print instances of

create and print

access individual loci

pick random loci and allele values

count allele values

convert (internal) to (printable)

decode binary chromosomes (including gray coded representations)

determine if two chromosomes are the same

determine the Hamming distance between two chromosomes

perform mutation and crossover on chromosomes

There are also two �les containing example GAs. These �les aren't intended to show

impressive solutions to tough problems; rather they are intended to show how one might

go about building a GA using .

This is the simple binary example discussed in Chapter 4.

This is another simple example, using a sequence-based chromosome.

November 27, 1993

Bibliography

A Connectionist Machine for Genetic Hillclimbing

Proceedings

of an International Conference on Genetic Algorithms and Their Applications

Proceedings

of the Fourth International Conference on Genetic Algorithms

Proceedings of the Fifth

International Conference on Machine Learning

Handbook of Genetic Algorithms

An analysis of the behavior of a class of genetic adaptive systems

Genetic Algorithms in Search, Optimization, and Machine

Learning

[Ack87] D. A. Ackley. . Kluwer Aca-

demic Publishers, 1987.

[Bak85] J. E. Baker. Adaptive selection methods for genetic algorithms. In

,

pages 100{101. Lawrence Erlbaum Associates, 1985.

[BHS91] Thomas B�ack, Frank Ho�meister, and Hans-Paul Schwefel. A survey of evolu-

tion strategies. In Richard K. Belew and Lashon B. Booker, editors,

, pages 2{9. Mor-

gan Kaufmann, 1991.

[Bri81] A. Brindle. Genetic algorithms for function optimization, 1981. Unpublished

doctoral dissertation, University of Alberta, Edmonton.

[CS88] R. A. Caruna and J. D. Scha�er. Representation and hidden bias: Gray vs. bi-

nary coding for genetic algorithms. In J. Laird, editor,

, pages 153{161. Morgan Kauf-

mann, June 1988.

[Dav91] L. Davis. . Van Nostrand Reinhold, New York,

1991.

[DeJ75] K. A. DeJong. .

Doctoral dissertation, University of Michigan, 1975.

[Gol82] David E. Goldberg. SGA: A simple genetic algorithm. Computer program in

Pascal, University of Michigan, Department of Civil Engineering, Ann Arbor,

1982.

[Gol89] David E. Goldberg.

. Academic Press, The University of Alabama, 1989.

83

:GECO 84

BIBLIOGRAPHY

Proceedings of the 1984 Conference on Intelligent Systems and Machines

Induction:

Processes of Inference, Learning, and Discovery

Adaptation in Natural and Arti�cial Systems

Adaptation in Natural and Arti�cial Systems

Pattern Directed

Inference Systems

Object-Oriented Programming in Common Lisp: A Program-

mer's Guide to CLOS

Genetic Programming: On the Programming of Computers by

Means of Natural Selection and Genetics

Parallel Problem

Solving from Nature 2

Pro-

ceedings of the Fourth International Conference on Genetic Algorithms

2 0

[Gre84a] J. J. Grefenstette. GENESIS: A system for using genetic search procedures. In

, pages

161{165, 1984.

[Gre84b] J. J. Grefenstette. A user's guide to GENESIS. Technical Report CS-84-11,

Vanderbilt University, Department of Computer Science, Nashville, 1984.

[HHNT87] John H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard.

. The MIT Press, Cambridge,

1987.

[Hol75] John H. Holland. . University of

Michigan Press, 1975.

[Hol92] John H. Holland. . The MIT Press,

1992. This is a revised and extended version of [Hol75].

[HR78] John H. Holland and J. S. Reitman. Cognitive systems based on adaptive

algorithms. In D. A. Waterman and F. Hayes-Roth, editors,

, pages 313{329. Addison-Wesley, New York, 1978.

[Kee89] Sonya E. Keene.

. Academic Press, 1989.

[Koz92] John R. Koza.

. The MIT Press, June 1992.

[MJ91] Z. Michalewicz and C. Janikow. Data structures + genetic operators = evolution

programs. Technical report, UNCC, 1991.

[Rad92a] Nicholas J. Radcli�e. The algebra of genetic algorithms. Technical Report

EPCC-92-11, Edinburgh Parallel Computing Centre, University of Edinburgh,

1992.

[Rad92b] Nicholas J. Radcli�e. Non-linear genetic representations. In

. Elsevier Science Publishers, 1992.

[SD91] William M. Spears and Kenneth A. DeJong. On the virtues of parameterised

uniform crossover. In Richard K. Belew and Lashon B. Booker, editors,

, pages

230{236. Morgan Kaufmann, 1991.

[Spe91] WilliamM. Spears. GAL. Computer program in Lisp, Navy Center for Applied

Research in AI, Naval Research Laboratory, 1991.

November 27, 1993

:GECO 85

BIBLIOGRAPHY

Common Lisp, The Language

Proceedings of

the Third International Conference on Genetic Algorithms

Pro-

ceedings of the Rocky Mountain Conference on Arti�cial Intelligence

2 0

[Ste90] Guy L. Steele, Jr. . Digital Press, second edition,

1990.

[Sys89] Gilbert Syswerda. Uniform crossover in genetic algorithms. In

. Morgan Kaufmann,

1989.

[WK88] D. Whitley and J. Kauth. GENITOR: A di�erent genetic algorithm. In

, 1988.

November 27, 1993

geco

Index

34

42

40

48

48

49

49

37

37

65

64

20 57

18 57

18 57

30

41

64

64

64

64

31

31

53

41

40

18

18

18

30 63

21 31 42

30

21 42

evaluate

make-loci-vector

evaluate

(setf locus)

2x-cross-chromosomes

2x-cross-organisms

:avg-normalized-score

:avg-score

:ecosystem

:evaluation-limit

:generation-limit

:genotype

:loci

:max-organism

:max-score

:min-organism

:min-score

:no-chromosomes

:normalized-score

:number-of-bits

:organism

:phenotype

:plan-class

:pop-class

:pop-size

:population

:random

:score

:size

:statistics

:After Method

,

:Around Method

,

:Before Method

,

abstraction hierarchy, 9

availability, 5

concepts, 9

terminology, 9

version, 5

Generic Function,

Primary Method,

Generic Function, 37,

Primary Method,

Generic Function,

Primary Method,

Initarg,

Initarg,

Initarg, ,

Initarg, , 19,

Initarg, , 19,

Initarg,

Initarg,

Initarg,

Initarg,

Initarg,

Initarg,

Initarg,

Initarg,

Initarg, , 53

Initarg,

Initarg,

Initarg,

Initarg,

Initarg,

Initarg, ,

Initarg, , 21, ,

Initarg,

Initarg, ,

86

:GECO 87

INDEX

21

65

64

46 51

46 51

46 52

52

27

27

65

65

64

64

53

53

29

29

28

28

28

28

54

54

51

33

41

24

24

66

66

23 66

23 66

25

25

27

27

27

27

43

43

32

32

32

32

48

48

49

49

:sum-normalized-score

:sum-score

allele-code-to-value

allele-counts

allele-values

as-good-as-test

avg-normalized-score

avg-score

b2g-map

best-organism-accessor

best-organism

better-than-test

bin2gray

binary-chromosome-10

binary-chromosome

binary-population-statistics

chromosome-classes

chromosome

compute-binary-allele-statistics

compute-normalized-statistics

compute-statistics

converged-p

convergence-fraction

convergence-threshold-margin

copy-chromosome

copy-organism-with-score

copy-organism

count-allele-codes

cross-chromosomes

2 0

Initarg,

Initarg,

Initarg,

Generic Function, 45, 46, ,

Primary Method, ,

Slot, 70

Generic Function, 45, 46, ,

Primary Method,

Generic Function,

Primary Method,

Accessor,

Slot, 65,

Accessor,

Slot, , 65

Accessor,

Slot,

Generic Function,

Primary Method,

Generic Function,

Primary Method,

Generic Function, , 62

Primary Method,

Generic Function,

Primary Method,

Class, 69

Class, 46{48, , 52, 69

Class, 70

Generic Function, , 33, 34

Primary Method, 69

Class, , 42, 44, 51, 55, 82

Generic Function, , 70

Primary Method,

Generic Function, 24, 65,

Primary Method,

Generic Function, , 23, 64, 65, ,

70

Primary Method, ,

Generic Function, , 27, 59

Primary Method,

Generic Function, 25,

Primary Method,

Generic Function, 25,

Primary Method,

Generic Function, 32,

Primary Method,

Generic Function, 32,

Primary Method,

Generic Function, 32, , 39

Primary Method,

Generic Function, , 72

Primary Method,

Generic Function, 36,

Primary Method,

November 27, 1993

:GECO 88

INDEX

36

36

52

52

40

20 57

17

20 57

35 43

35 43

34

40

20 23

34 40

20 23

57

57

17

17

59

20

20

53

53

57

57

17

17

25

57

34

34

30

30

53

54

54

45

45

47

47

41

41

43 51

51

47

47

47

47

33

cross-organisms

decode-binary-loci-value

decode

ecosystem

eidetic

evaluate

evaluation-limit

evaluation-number

evolution-termination-p

evolve

g2b-map

geco-random-float

geco-random-integer

generation-limit

generation-number

generational-population

genetic-plan

genotype-printable-form

genotype

gray-code-translation

gray2bin

hamming-distance

loci-printable-form

loci-vector

loci

locus-arity

locus-printable-form

locus

make-chromosomes

2 0

Generic Function,

Primary Method,

Generic Function,

Primary Method,

Generic Function, 40, , 40, 73

Accessor, ,

Class, 17, , 17{20, 53, 58, 73, 80

Slot, , , 59

Generic Function, 35, ,

Primary Method, ,

:After Method,

:Before Method,

Generic Function, 17, 20, , , 23,

, 40, , 73

Primary Method, , 20, , 72

Accessor,

Slot, 19, , 59

Accessor,

Slot, , 34

Generic Function, 20, 57,

Generic Function, 13, 17,

Primary Method, , 59

Accessor,

Slot,

Function, 79

Function, 44, 46, 60, 79

Accessor,

Slot, 19, , 59

Accessor,

Slot,

Class, , 58, 71, 74

Class, 18, 19, 57, , 66, 72, 73, 80

Generic Function,

Primary Method,

Accessor,

Slot, , 31, 33, 34, 40, 69, 73

Class, , 53

Generic Function,

Primary Method,

Generic Function,

Primary Method,

Generic Function, 43, 45, 47,

Primary Method,

Slot, 45, 47

Accessor,

Slot, , 42, 52

Generic Function, , 46,

Primary Method,

Generic Function, 45, 47,

Primary Method,

Generic Function,

Primary Method,

Generic Function, 31,

November 27, 1993

:GECO 89

INDEX

33

33

33

19

19

42

42 52

42 52

22

22

22

22

22

22

23

23

19

19

64

64

64

64

26

26

26

64

64

64

64

26

26

26

48

48

36

36

24 35

24 35

31

31

53

53

23

39

21

21

41

make-chromosome

make-genetic-plan

make-instance

make-loci-vector

make-organisms-vector

make-organisms

make-organism

make-population-statistics

make-population

max-organism

max-score

maximizing-p

maximizing-score-mixin

min-organism

min-score

minimizing-p

minimizing-score-mixin

mutate-chromosome

mutate-organism

normalize-score

normalized-score

number-of-bits

operate-on-population

organism-class

organism-phenotype-mixin

organisms

organism

2 0

Primary Method,

Generic Function, 33, , 42, 43, 51,

55

Primary Method,

Generic Function, , 19, 57

Primary Method,

Generic Function, 19, 22, 23, 53

:Around Method,

Generic Function, 42, ,

Primary Method, ,

Generic Function, 21,

Primary Method,

Generic Function, 21,

Primary Method,

Generic Function, 22, , 22, 31

Primary Method,

Generic Function, , 23, 65

Primary Method,

Generic Function, , 21, 25

Primary Method,

Accessor,

Generic Function, 28, 29

Slot,

Accessor,

Slot, , 64

Generic Function,

Primary Method,

Class, , 27{29

Accessor,

Generic Function, 28, 29

Slot,

Accessor,

Slot, , 64

Generic Function,

Primary Method,

Class, , 27, 29

Generic Function, 36,

Primary Method,

Generic Function,

Primary Method,

Generic Function, 23, , 24,

Primary Method, , , 66

Accessor,

Slot, 25, , 31, 32, 35

Accessor,

Slot,

Generic Function, 74

Primary Method, 74, 75

Generic Function, 22,

Primary Method, 71

Class, 11, 30, 32, , 40, 73

Accessor,

Slot, 21, , 59

Accessor,

November 27, 1993

:GECO 90

INDEX

30

41

40

40

44

44

45 55

45 55

46

46

36

36

35

35

60

60

60

60

62

62

18

18

56

56

39

39

24

24

63

17 30 63

20

17 30 63

31 43 65

47 52

52

56

56

38

38

34

34

62

62

58

58

60

60

61

61

60

30

phenotype

pick-locus-index

pick-random-alleles

pick-random-allele

pick-random-chromosome-index

pick-random-chromosome

pick-random-organism-index

pick-random-organism

pick-some-random-organism-indices

plan

pmx-cross-chromosomes

pmx-cross-organisms

population-statistics-class

population-statistics

population

print-object

printable-allele-values

r3-cross-chromosomes

r3-cross-organisms

randomize-chromosomes

ranking-preselect

regenerate

roulette-pick-random-organism-index

roulette-pick-random-organism

roulette-pick-random-weight-index

scores

score

2 0

Class, 12, 17, 30, , 31, 33, 34, 69,

73, 81

Slot, , 43

Accessor,

Slot, 12, 39, , 40, 73

Generic Function,

Primary Method,

Generic Function, 34, 42, ,

Primary Method, ,

Generic Function, , 48

Primary Method,

Generic Function, 35,

Primary Method,

Generic Function,

Primary Method,

Generic Function, , 60

Primary Method,

Generic Function,

Primary Method,

Generic Function, , 62

Primary Method,

Accessor,

Slot, 18, , 19

Generic Function, 39,

Primary Method,

Generic Function,

Primary Method,

Generic Function, 23,

Primary Method, , 71

Class, 21, 23, 24, 29, , 64{66, 70, 81

Accessor, , ,

Class, 12, 17, 18, 20, , 21{25, 58, 66,

71, 73, 80, 81

Slot, , 18{20, , 58, , 64{66

Primary Method, , ,

Generic Function, 45, , 47,

Primary Method,

Generic Function, 38,

Primary Method,

Generic Function,

Primary Method,

Generic Function,

Primary Method,

Generic Function,

Primary Method,

Generic Function, 20, 58,

Primary Method, 25, , 58, 74

Generic Function,

Primary Method,

Generic Function,

Primary Method,

Function,

Slot, 28

Accessor,

November 27, 1993

:GECO 91

INDEX

30

50

50

55

21

44

44

21

21

21

61

61

65

65

64

64

50

50

62

62

49

49

37

37

29

29

28

28

12

65

64

53

20 57

57

17

53

57

17

30

41

64

64

64

64

31

53

21

41

40

18

17 30 63

30

21

21

65

64

45

2 0

Slot, 23, 25, 27, , 31, 32, 34, 35, 40,

64, 65

Generic Function, , 55

Primary Method,

Class, 39, , 55

Class, 69, 72

Class, 71, 74

Class, 75

Class, 75

Class, 72, 74, 75

Accessor,

Generic Function, 42,

Primary Method, , 69

Slot, 21,

Accessor,

Slot, , 72, 74

Generic Function, , 75

Primary Method,

Accessor,

Slot,

Accessor,

Slot,

Generic Function,

Primary Method,

Generic Function,

Primary Method,

Generic Function, 37,

Primary Method,

Generic Function,

Primary Method,

Generic Function,

Primary Method,

Generic Function,

Primary Method,

abstract class,

Accessor

,

,

,

, ,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

, , ,

,

,

,

,

,

allele codes, 45,

November 27, 1993

scramble-alleles

sequence-chromosome

simple-binary-10-organism

simple-binary-population

simple-plan-1

simple-plan-2

simple-plan

size

statistics

stochastic-remainder-preselect

sum-normalized-score

sum-score

swap-alleles

tournament-select-organism

uniform-cross-chromosomes

uniform-cross-organisms

worst-organism-accessor

worst-organism

avg-normalized-score

avg-score

b2g-map

ecosystem

evaluation-limit

evaluation-number

g2b-map

generation-limit

generation-number

genotype

loci

max-organism

max-score

min-organism

min-score

normalized-score

number-of-bits

organisms

organism

phenotype

plan

population

score

size

statistics

sum-normalized-score

sum-score

:GECO 92

INDEX

45

11

51

41

17

25

57

53

26

26

39

30

63

20

55

5

25

17

35

6

60

11

48

49

37

46 51

46 52

27

29

28

28

54

33

24

66

23

66

25

27

27

43

32

32

48

49

36

52

40

35 43

20 23 34 40

59

20

34

2 0

allele values, , 45

alleles,

chromosome, 11

Class

, 69

, 46{48, , 52, 69

, 70

, , 42, 44, 51, 55, 82

, 17, , 18{20, 53, 58, 73,

80

, , 58, 71,

74

, 18, 19, , 57, 66, 72,

73, 80

, 53,

, , 27{29

, , 27{29

, 11, 30,

32, , 40, 73

, 12, 17, 30, , 31, 33, 34,

69, 73, 81

, 21, 23, 24,

29, , 64{66, 70, 81

, 12, 17, 18, 20, , 21{25,

58, 66, 71, 73, 80, 81

, 39, , 55

, 69, 72

, 71, 74

, 75

, 75

, 72, 74, 75

CLOS,

converged, , 70

count ones problem, 67

crossover, 13, 36{39, 49, 56, 59, 75, 82

ecosystem, 9,

eidetic,

ag line,

Function

, 79

, 44, 46, 60, 79

,

GECO, 4

gene,

Generic Function

,

, 37,

,

, 45, , 46,

, 45, 46, ,

,

,

,

, , 62

,

, , 33, 34

,

, 70

, 24,

65,

, , 23, 64, 65,

, 70

, , 27, 59

, 25,

, 25,

, 32,

, 32,

, 32, , 39

, , 72

, 36,

,

,

, , 40, 73

, 35, ,

, 17, 20, , 23, , , ,

40, 73

, 20, 57,

, 13, 17,

,

November 27, 1993

binary-chromosome-10

binary-chromosome

binary-population-statistics

chromosome

ecosystem

generational-population

genetic-plan

gray-code-translation

maximizing-score-mixin

minimizing-score-mixin

organism-phenotype-mixin

organism

population-statistics

population

sequence-chromosome

simple-binary-10-organism

simple-binary-population

simple-plan-1

simple-plan-2

simple-plan

geco-random-float

geco-random-integer

roulette-pick-random-weight-index

(setf locus)

2x-cross-chromosomes

2x-cross-organisms

allele-code-to-value

allele-values

as-good-as-test

best-organism-accessor

best-organism

better-than-test

bin2gray

chromosome-classes

compute-binary-allele-statistics

compute-normalized-statistics

compute-statistics

converged-p

convergence-fraction

convergence-threshold-margin

copy-chromosome

copy-organism-with-score

copy-organism

count-allele-codes

cross-chromosomes

cross-organisms

decode-binary-loci-value

decode

eidetic

evaluate

evolution-termination-p

evolve

genotype-printable-form

:GECO 93

INDEX

54

45

47

43 51

47

47

33

33

19

42 52

22

22

22

23

19

26

26

48

36

24 35

23

44

45 55

46

36

35

60

60

62

56

39

24

47

52

56

38

34

62

58

60

61

50

44

61

50

62

49

37

29

28

11

65

64

20 57

18 57

18 57

30

41

64

64

64

64

31

2 0

,

,

, 43, 45, 47,

, , 46,

, 45, , 47

,

, 31,

, 33, , 42, 43, 51,

55

, , 19, 57

, 19, 22, 23, 53

, 42, ,

, 21,

, 21,

, 22, , 31

, 23, ,

65

, , 19, 21, 25

, 28, 29

,

, 28, 29

,

, 36,

,

, 23, 24, ,

, 74

, 22,

,

, 34, 42, ,

, , 48

, 35,

,

, 60,

,

,

62,

, 39,

,

, 23,

, 45, 47, ,

, 38,

,

,

,

, 20, , 58

,

,

, , 55

, 42,

, ,

75

,

,

, 37,

,

,

,

genetic operators, 11, 20, 30, 59

basic chromosomes, 48

basic organism level, 36

sequence chromosomes, 56

genetic plan, 11, 56, 66, 73, 74

genotype, , 41

gray code, 12

gray code translation, 53

Initarg

,

,

, ,

, , 19,

, , 19,

,

,

,

,

,

,

,

November 27, 1993

gray2bin

hamming-distance

loci-printable-form

locus-arity

locus-printable-form

locus

make-chromosomes

make-chromosome

make-genetic-plan

make-instance

make-loci-vector

make-organisms-vector

make-organisms

make-organism

make-population-statistics

make-population

max-organism

maximizing-p

min-organism

minimizing-p

mutate-chromosome

mutate-organism

normalize-score

operate-on-population

organism-class

pick-locus-index

pick-random-alleles

pick-random-allele

pick-random-chromosome-index

pick-random-chromosome

pick-random-organism-index

pick-random-organism

pick-some-random-organism-indices

pmx-cross-chromosomes

pmx-cross-organisms

population-statistics-class

printable-allele-values

r3-cross-chromosomes

r3-cross-organisms

randomize-chromosomes

ranking-preselect

regenerate

roulette-pick-random-organism-index

roulette-pick-random-organism

scramble-alleles

size

stochastic-remainder-preselect

swap-alleles

tournament-select-organism

uniform-cross-chromosomes

uniform-cross-organisms

worst-organism-accessor

worst-organism

:avg-normalized-score

:avg-score

:ecosystem

:evaluation-limit

:generation-limit

:genotype

:loci

:max-organism

:max-score

:min-organism

:min-score

:no-chromosomes

:GECO 94

INDEX

31

53

41

40

18

18

18

30 63

21 31 42

30

21 42

21

65

64

11

41

12

29

11

48

49

37

46 51

52

27

29

28

28

54

24

66

23 66

25

27

27

43

32

32

48

49

36

52

35 43

20 23

20

34

54

45

47

51

47

47

33

33

19

42 52

22

22

22

23

19

26

26

48

36

24 35

44

2 0

,

, 53, , 53

,

,

,

,

,

, ,

, 21, , ,

,

, ,

,

,

,

initialization, 71, 80{82

loci,

loci-vector,

mixin class,

mutate, 13, 36, 48, 59, 75, 82

normalization, 24, 35, 63, 65, 66, 70, 81

onemax problem, 67

organism, 9,

phenotype, , 11, 39

population, 9

initialization, 42

population statistics, 11

Primary Method

,

,

,

, ,

,

,

,

,

,

,

, 69

,

,

, ,

,

,

,

,

,

,

,

,

,

,

, ,

, 20, , , 72

, , 59

,

,

,

,

,

,

,

,

,

,

, ,

,

,

,

,

,

,

,

,

,

, , , 66

, 74, 75

, 71

,

November 27, 1993

:normalized-score

:number-of-bits

:organism

:phenotype

:plan-class

:pop-class

:pop-size

:population

:random

:score

:size

:statistics

:sum-normalized-score

:sum-score

(setf locus)

2x-cross-chromosomes

2x-cross-organisms

allele-code-to-value

allele-values

as-good-as-test

best-organism-accessor

best-organism

better-than-test

bin2gray

chromosome-classes

compute-binary-allele-statistics

compute-normalized-statistics

compute-statistics

converged-p

convergence-fraction

convergence-threshold-margin

copy-chromosome

copy-organism-with-score

copy-organism

count-allele-codes

cross-chromosomes

cross-organisms

decode-binary-loci-value

eidetic

evaluate

evolve

genotype-printable-form

gray2bin

hamming-distance

loci-printable-form

locus-arity

locus-printable-form

locus

make-chromosomes

make-chromosome

make-genetic-plan

make-loci-vector

make-organisms-vector

make-organisms

make-organism

make-population-statistics

make-population

maximizing-p

minimizing-p

mutate-chromosome

mutate-organism

normalize-score

operate-on-population

organism-class

pick-locus-index

:GECO 95

INDEX

45 55

46

36

35

60

60

62

56

39

24

31 43 65

52

56

38

34

62

58

60

61

50

44

61

50

62

49

37

29

28

11 59

65

64

53

20 57

57

17

53

57

17

30

41

64

64

64

64

31

53

21

41

40

18

17 30 63

30

21

21

65

64

13

2 0

, ,

,

,

,

,

,

,

,

,

, , 71

, , ,

,

,

,

,

,

, 25, 58, , 74

,

,

,

, , 69

,

,

,

,

,

,

,

regenerate, 11, 13, 56

score, ,

normalization, 24

selection, 56, 59, 81

Slot

, 70

, , 65

, , 65

,

, , , 59

, 19, , 59

, , 34

,

, 19, , 59

,

, , 31, 33, 34, 40, 69, 73

, 45, 47

, , 42, 52

,

, 64,

,

, 64,

, 25, 31, , 32, 35

,

, 21, , 21, 59

, , 43

, 12, 32, 39, 40, , 73

, 18, , 19

, , 18{20, , 58, , 64{

66

, 28

, 23, 25, 27, , 31, 32, 34, 35,

40, 64, 65

, 21,

, , 72, 74

,

,

tail recursion,

termination, 20, 25, 57, 59, 80

TSP, 12

November 27, 1993

pick-random-alleles

pick-random-allele

pick-random-chromosome-index

pick-random-chromosome

pick-random-organism-index

pick-random-organism

pick-some-random-organism-indices

pmx-cross-chromosomes

pmx-cross-organisms

population-statistics-class

print-object

printable-allele-values

r3-cross-chromosomes

r3-cross-organisms

randomize-chromosomes

ranking-preselect

regenerate

roulette-pick-random-organism-index

roulette-pick-random-organism

scramble-alleles

size

stochastic-remainder-preselect

swap-alleles

tournament-select-organism

uniform-cross-chromosomes

uniform-cross-organisms

worst-organism-accessor

worst-organism

allele-counts

avg-normalized-score

avg-score

b2g-map

ecosystem

evaluation-limit

evaluation-number

g2b-map

generation-limit

generation-number

genotype

loci-vector

loci

max-organism

max-score

min-organism

min-score

normalized-score

number-of-bits

organisms

organism

phenotype

plan

population

scores

score

size

statistics

sum-normalized-score

sum-score

